1
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Recent Insights into the Molecular Mechanisms of the Toll-like Receptor Response to Influenza Virus Infection. Int J Mol Sci 2024; 25:5909. [PMID: 38892096 PMCID: PMC11172706 DOI: 10.3390/ijms25115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Influenza A viruses (IAVs) pose a significant global threat to human health. A tightly controlled host immune response is critical to avoid any detrimental effects of IAV infection. It is critical to investigate the association between the response of Toll-like receptors (TLRs) and influenza virus. Because TLRs may act as a double-edged sword, a balanced TLR response is critical for the overall benefit of the host. Consequently, a thorough understanding of the TLR response is essential for targeting TLRs as a novel therapeutic and prophylactic intervention. To date, a limited number of studies have assessed TLR and IAV interactions. Therefore, further research on TLR interactions in IAV infection should be conducted to determine their role in host-virus interactions in disease causation or clearance of the virus. Although influenza virus vaccines are available, they have limited efficacy, which should be enhanced to improve their efficacy. In this study, we discuss the current status of our understanding of the TLR response in IAV infection and the strategies adopted by IAVs to avoid TLR-mediated immune surveillance, which may help in devising new therapeutic or preventive strategies. Furthermore, recent advances in the use of TLR agonists as vaccine adjuvants to enhance influenza vaccine efficacy are discussed.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
2
|
Longsompurana P, Rungrotmongkol T, Plongthongkum N, Wangkanont K, Wolschann P, Poo-arporn RP. Computational design of novel nanobodies targeting the receptor binding domain of variants of concern of SARS-CoV-2. PLoS One 2023; 18:e0293263. [PMID: 37874836 PMCID: PMC10597523 DOI: 10.1371/journal.pone.0293263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
The COVID-19 pandemic has created an urgent need for effective therapeutic and diagnostic strategies to manage the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the emergence of numerous variants of concern (VOCs) has made it challenging to develop targeted therapies that are broadly specific in neutralizing the virus. In this study, we aimed to develop neutralizing nanobodies (Nbs) using computational techniques that can effectively neutralize the receptor-binding domain (RBD) of SARS-CoV-2 VOCs. We evaluated the performance of different protein-protein docking programs and identified HDOCK as the most suitable program for Nb/RBD docking with high accuracy. Using this approach, we designed 14 novel Nbs with high binding affinity to the VOC RBDs. The Nbs were engineered with mutated amino acids that interacted with key amino acids of the RBDs, resulting in higher binding affinity than human angiotensin-converting enzyme 2 (ACE2) and other viral RBDs or haemagglutinins (HAs). The successful development of these Nbs demonstrates the potential of molecular modeling as a low-cost and time-efficient method for engineering effective Nbs against SARS-CoV-2. The engineered Nbs have the potential to be employed in RBD-neutralizing assays, facilitating the identification of novel treatment, prevention, and diagnostic strategies against SARS-CoV-2.
Collapse
Affiliation(s)
- Phoomintara Longsompurana
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nongluk Plongthongkum
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Peter Wolschann
- Institute of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Rungtiva P. Poo-arporn
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
3
|
Lin X, Zhu M, Zhao X, Si L, Dong M, Anirudhan V, Cui Q, Rong L, Du R. Optimization and applications of an in vivo bioluminescence imaging model of influenza A virus infections. Virol Sin 2023; 38:631-634. [PMID: 37141991 PMCID: PMC10436047 DOI: 10.1016/j.virs.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
•The in vivo BLI model of IAV infections can simplify the determination of viral load in living animals. •The in vivo BLI model of IAV infections allow longitudinal measurements of virus infection/spread in living animals. •The in vivo BLI model of IAV infections improved the throughput of animal models. •The advanced BLI models can facilitate studies in both basic and applied virology.
Collapse
Affiliation(s)
- Xiaojing Lin
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 50355, China
| | - Murong Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 50355, China
| | - Xiujuan Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 50355, China
| | - Longlong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Meiyue Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 50355, China
| | - Varada Anirudhan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qinghua Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 50355, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Ruikun Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 50355, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| |
Collapse
|
4
|
Moens U. Role of Signaling Pathways in the Viral Life Cycle 2.0. Int J Mol Sci 2022; 23:ijms23147857. [PMID: 35887205 PMCID: PMC9324909 DOI: 10.3390/ijms23147857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|