1
|
Ge X, Xue G, Ding Y, Li R, Hu K, Xu T, Sun M, Liao W, Zhao B, Wen C, Du J. The Loss of YTHDC1 in Gut Macrophages Exacerbates Inflammatory Bowel Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205620. [PMID: 36922750 PMCID: PMC10190588 DOI: 10.1002/advs.202205620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
The nuclear N6 -methyladenosine (m6 A) reader YT521-B homology-domain-containing protein 1 (YTHDC1) is required to maintain embryonic stem cell identity. However, little is known about its biological functions in intestinal-resident macrophages and inflammatory bowel disease (IBD). Herein, it is demonstrated that macrophage-specific depletion or insufficiency of YTHDC1 accelerates IBD development in animal models. On the molecular basis, YTHDC1 reduction in IBD-derived macrophages is attributed to Zinc finger protein 36 (ZFP36)-induced mRNA degradation. Importantly, transcriptome profiling and mechanistic assays unveil that YTHDC1 in macrophages regulates Ras homolog family member H (RHOH) to suppress inflammatory responses and fine-tunes NME nucleoside diphosphate kinase 1 (NME1) to enhance the integrity of colonic epithelial barrier, respectively. Collectively, this study identifies YTHDC1 as an important factor for the resolution of inflammatory responses and restoration of colonic epithelial barrier in the setting of IBD.
Collapse
Affiliation(s)
- Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
| | - Gang Xue
- Department of GastroenterologySecond Hospital of Shanxi Medical UniversityTaiyuanShanxi030001China
| | - Yan Ding
- Department of DermatologyHainan Provincial Hospital of Skin DiseaseHaikouHainan570000China
- Department of DermatologyHainan Medical University Affiliated Dermatology Hospital of Hainan Medical CollegeHaikouHainan570000China
| | - Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
| | - Kaining Hu
- Department of Human GeneticsThe University of ChicagoChicagoIL60637USA
| | - Tengjiao Xu
- Department of DermatologyHainan Medical University Affiliated Dermatology Hospital of Hainan Medical CollegeHaikouHainan570000China
| | - Ming Sun
- College of Life SciencesMudanjiang Medical UniversityMudanjiangHeilongjiang157011China
| | - Wang Liao
- Department of CardiologyHainan General Hospital and Hainan Affiliated Hospital of Hainan Medical UniversityHaikou570311China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
| | - Chuangyu Wen
- Central LaboratoryAffiliated Dongguan HospitalSouthern Medical UniversityDongguanGuangdong523108China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsShanxi Medical University School and Hospital of StomatologyTaiyuanShanxi030001China
- Institute of Biomedical ResearchShanxi Medical UniversityTaiyuanShanxi030001China
| |
Collapse
|
2
|
Santilli F, Fabrizi J, Pulcini F, Santacroce C, Sorice M, Delle Monache S, Mattei V. Gangliosides and Their Role in Multilineage Differentiation of Mesenchymal Stem Cells. Biomedicines 2022; 10:biomedicines10123112. [PMID: 36551867 PMCID: PMC9775755 DOI: 10.3390/biomedicines10123112] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Gangliosides (GGs) are a glycolipid class present on Mesenchymal Stem Cells (MSCs) surfaces with a critical appearance role in stem cell differentiation, even though their mechanistic role in signaling and differentiation remains largely unknown. This review aims to carry out a critical analysis of the predictive role of gangliosides as specific markers of the cellular state of undifferentiated and differentiated MSCs, towards the osteogenic, chondrogenic, neurogenic, and adipogenic lineage. For this reason, we analyzed the role of GGs during multilineage differentiation processes of several types of MSCs such as Umbilical Cord-derived MSCs (UC-MSCs), Bone Marrow-derived MSCs (BM-MSCs), Dental Pulp derived MSCs (DPSCs), and Adipose derived MSCs (ADSCs). Moreover, we examined the possible role of GGs as specific cell surface markers to identify or isolate specific stem cell isotypes and their potential use as additional markers for quality control of cell-based therapies.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Jessica Fabrizi
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
- Correspondence: (S.D.M.); (V.M.)
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Correspondence: (S.D.M.); (V.M.)
| |
Collapse
|
3
|
She H, Tan L, Zhou Y, Zhu Y, Ma C, Wu Y, Du Y, Liu L, Hu Y, Mao Q, Li T. The Landscape of Featured Metabolism-Related Genes and Imbalanced Immune Cell Subsets in Sepsis. Front Genet 2022; 13:821275. [PMID: 35265105 PMCID: PMC8901109 DOI: 10.3389/fgene.2022.821275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a heterogeneous disease state triggered by an uncontrolled inflammatory host response with high mortality and morbidity in severely ill patients. Unfortunately, the treatment effectiveness varies among sepsis patients and the underlying mechanisms have yet to be elucidated. The present aim is to explore featured metabolism-related genes that may become the biomarkers in patients with sepsis. In this study, differentially expressed genes (DEGs) between sepsis and non-sepsis in whole blood samples were identified using two previously published datasets (GSE95233 and GSE54514). A total of 66 common DEGs were determined, namely, 52 upregulated and 14 downregulated DEGs. The Gene Set Enrichment Analysis (GSEA) results indicated that these DEGs participated in several metabolic processes including carbohydrate derivative, lipid, organic acid synthesis oxidation reduction, and small-molecule biosynthesis in patients with sepsis. Subsequently, a total of 8 hub genes were screened in the module with the highest score from the Cytoscape plugin cytoHubba. Further study showed that these hub DEGs may be robust markers for sepsis with high area under receiver operating characteristic curve (AUROC). The diagnostic values of these hub genes were further validated in myocardial tissues of septic rats and normal controls by untargeted metabolomics analysis using liquid chromatography-mass spectrometry (LC-MS). Immune cell infiltration analysis revealed that different infiltration patterns were mainly characterized by B cells, T cells, NK cells, monocytes, macrophages, dendritics, eosinophils, and neutrophils between sepsis patients and normal controls. This study indicates that metabolic hub genes may be hopeful biomarkers for prognosis prediction and precise treatment in sepsis patients.
Collapse
Affiliation(s)
- Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Tan
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanqun Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Chunhua Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanlin Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Hu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|