1
|
Zeng Y, Liu J, Wang W, Wang B, Jia A. Actinomycin D reduces virulence factors and biofilms against Aeromonas hydrophila. J Appl Microbiol 2024; 135:lxae240. [PMID: 39277782 DOI: 10.1093/jambio/lxae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/17/2024]
Abstract
AIMS Aeromonas hydrophila, a Gram-negative bacterium, is ubiquitously found in many aquatic habitats, causing septicemia in humans and fishes. Attributed to abuse or misuse of conventional antimicrobial drug usage, antimicrobial resistance is at an alarming rise. There is an available alternative strategy to bacterial resistance to antimicrobials, which is inhibition of virulence and pathogenicity employing quorum sensing inhibitors (QSIs). Hence, actinomycin D's effectiveness against A. hydrophila SHAe 115 as a QSI was investigated in decreasing virulence factors and preventing biofilm formation. METHODS AND RESULTS Actinomycin D, belongs to the QSI combating Pseudomonas aeruginosa PAO1 originally isolated from an entophytic actinomycete (Streptomyces cyaneochromogenes RC1) in Areca catechu L. In the present work, further investigations were carried out to assess the effect of actinomycin D at subminimal inhibitory concentrations (sub-MICs), QS-regulated virulence factors, and biofilm inhibition strategies. Intrinsic properties encompassing inhibition of the production of protease and hemolysin and subsequent activities on biofilm formation and eradication of mature biofilm were established along with weakened swimming and swarming motilities in A. hydrophila SHAe 115. In the Tenebrio molitor survival assay, actinomycin D effectively reduced the virulence and pathogenicity of A. hydrophila, resulting in elimination of mortality. However, the hydrolysate of actinomycin D, 2-hydroxy-4,6-dimethyl-3-oxo-3H-phenoxazine-1,9-dicarboxylic acid (HDPD), had lost the QSI activity in A. hydrophila. CONCLUSIONS Actinomycin D was proved as a viable QSI in lessening A. hydrophila's the virulence and pathogenicity, as evident from our research findings.
Collapse
Affiliation(s)
- Yuexiang Zeng
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Junsheng Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Wei Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Bo Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Aiqun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| |
Collapse
|
2
|
Fei P, Sun Z, Liu X, Jiang P, Feng H, Chen X, Ma Y, Dong G, Fan C, Bai M, Li Y, Chang Y. Antibacterial Activity and Mechanism of Polygonatum sibiricum Extract Against Bacillus cereus and Its Application in Pasteurized Milk. Foodborne Pathog Dis 2024; 21:160-167. [PMID: 38079263 DOI: 10.1089/fpd.2023.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
The purpose of this study was to reveal the antibacterial activity and mechanism of Polygonatum sibiricum extract (PSE) against Bacillus cereus and further analyze the application of PSE in pasteurized milk (PM). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values and growth curve analysis were used to evaluate the antibacterial activity of PSE against B. cereus. The changes in contents of intracellular adenosine 5'-triphosphate (ATP) and reactive oxygen species (ROS), activities of β-galactosidase, adenosine triphosphatase (ATPase) and alkaline phosphatase (AKP), cell membrane potential, protein and nucleic acid leakage, and cell morphology were used to reveal the antibacterial mechanism. The effects of PSE on viable count and sensory evaluation of PM during storage were analyzed. The results showed that the MIC and MBC values of PSE against B. cereus were 2 and 4 mg/mL, respectively. Growth curve analysis showed that PSE with a concentration of 2 MIC could completely inhibit the growth of B. cereus. After treatments with PSE, the levels of intracellular ATP and ROS, and activities of β-galactosidase, ATPase and AKP of B. cereus were significantly reduced (p < 0.05). Cell membrane was depolarized, amounts of protein and nucleic acid leakage were significantly increased (p < 0.05), and cell morphology was destroyed. Furthermore, PSE significantly reduced the viable count of B. cereus in PM and improved the sensory quality of PM during storage (p < 0.05). Together, our findings suggested that PSE had the desired effect as a natural preservative applied in PM.
Collapse
Affiliation(s)
- Peng Fei
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
- Zhongyuan Food Laboratory, Luohe, China
| | - Zongyu Sun
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Xinyu Liu
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Peiyi Jiang
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Hongxia Feng
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Xi Chen
- Institute of Integrated Agricultural Development Research, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yan Ma
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Gege Dong
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Chengwei Fan
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Mengyang Bai
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Yadi Li
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| |
Collapse
|
3
|
Weng Z, Zeng F, Wang M, Guo S, Tang Z, Itagaki K, Lin Y, Shen X, Cao Y, Duan JA, Wang F. Antimicrobial activities of lavandulylated flavonoids in Sophora flavences against methicillin-resistant Staphylococcus aureus via membrane disruption. J Adv Res 2024; 57:197-212. [PMID: 37137428 PMCID: PMC10918359 DOI: 10.1016/j.jare.2023.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION The continuous emergence and rapid spread of multidrug-resistant bacteria have accelerated the demand for the discovery of alternative antibiotics. Natural plants contain a variety of antibacterial components, which is an important source for the discovery of antimicrobial agents. OBJECTIVE To explore the antimicrobial activities and related mechanisms of two lavandulylated flavonoids, sophoraflavanone G and kurarinone in Sophora flavescens against methicillin-resistant Staphylococcus aureus. METHODS The effects of sophoraflavanone G and kurarinone on methicillin-resistant Staphylococcus aureus were comprehensively investigated by a combination of proteomics and metabolomics studies. Bacterial morphology was observed by scanning electron microscopy. Membrane fluidity, membrane potential, and membrane integrity were determined using the fluorescent probes Laurdan, DiSC3(5), and propidium iodide, respectively. Adenosine triphosphate and reactive oxygen species levels were determined using the adenosine triphosphate kit and reactive oxygen species kit, respectively. The affinity activity of sophoraflavanone G to the cell membrane was determined by isothermal titration calorimetry assays. RESULTS Sophoraflavanone G and kurarinone showed significant antibacterial activity and anti-multidrug resistance properties. Mechanistic studies mainly showed that they could target the bacterial membrane and cause the destruction of the membrane integrity and biosynthesis. They could inhibit cell wall synthesis, induce hydrolysis and prevent bacteria from synthesizing biofilms. In addition, they can interfere with the energy metabolism of methicillin-resistant Staphylococcus aureus and disrupt the normal physiological activities of the bacteria. In vivo studies have shown that they can significantly improve wound infection and promote wound healing. CONCLUSION Kurarinone and sophoraflavanone G showed promising antimicrobial properties against methicillin-resistant Staphylococcus aureus, suggesting that they may be potential candidates for the development of new antibiotic agents against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zebin Weng
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fei Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Minxin Wang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Guo
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhijuan Tang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kiyoshi Itagaki
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yajuan Lin
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, and Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yaqi Cao
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Ao Duan
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Fang Wang
- College of Food Science and Engineering, and Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Yuan L, Dai H, He G, Yang Z, Jiao X. Invited review: Current perspectives for analyzing the dairy biofilms by integrated multiomics. J Dairy Sci 2023; 106:8181-8192. [PMID: 37641326 DOI: 10.3168/jds.2023-23306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023]
Abstract
Biofilms formed by pathogenic or spoilage microorganisms have become serious issues in the dairy industry, as this mode of life renders such microorganisms highly resistant to cleaning-in-place (CIP) procedures, disinfectants, desiccation, and other control strategies. The advent of omics techniques, especially the integration of different omics tools, has greatly improved our understanding of the features of microbial biofilms, and provided in-depth knowledge on developing effective methods that are directly against deleterious biofilms. This review provides novel insights into the single use of each omics tool and the application of multiomics tools to unravel the mechanisms of biofilm formation, specific molecular phenotypes exhibited by biofilms, and biofilm control strategies. Challenges and future perspective on the integration of omics tools for biofilm studies are also addressed.
Collapse
Affiliation(s)
- Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China; Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, China
| | - Hongchao Dai
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058 China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China.
| |
Collapse
|
5
|
Martins NDRC, Rodrigues da Silva A, Ratcliffe N, Evangelho VGO, Castro HC, Quinn GA. Streptomyces: a natural source of anti- Candida agents. J Med Microbiol 2023; 72. [PMID: 37991419 DOI: 10.1099/jmm.0.001777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Introduction. There is an urgent need to source new compounds that can combat the current threat of serious infection caused by Candida spp. and contend with the problem of antimicrobial resistance.
Gap. A synthesis of the evidence available from the current literature is needed to identify promising antifungal chemotherapeutics.
Aim. To highlight anti-Candida compounds derived from
Streptomyces
spp. (a well-known source of antimicrobial compounds) that could translate to potential candidates for future clinical practice.
Methodology. A comprehensive review was conducted across three scientific literature databases spanning a 13-year period.
Results. We identified 151 compounds with anti-Candida activity. Amongst these, 40 were reported with very strong inhibitory activity, having minimum inhibitory concentrations (MICs) against Candida spp. of <3.5 µg ml−1, 66 compounds were considered strong inhibitors and 45 compounds exhibited moderate inhibitory potential. From an analysis of the MICs, we deduced that the actinomycin-like compounds RSP01 and RSP02 were probably the most promising anti-Candida compounds. Other antifungals of note included filipin-like compounds, which demonstrated superior inhibition to amphotericin B and activity against Candida glabrata and Candida krusei, and bafilomycin derivatives, which had substantial inhibition against Candida parapsilosis.
Conclusion. It is essential to recognize the limitations inherent in the quest for new antifungals, which encompass toxicity, in vivo effectiveness and constraints associated with limited data access. However, further investigation through in-depth study and emerging technologies is of paramount importance, given that there are still many more compounds to discover. This review highlights the importance of antifungal compounds derived from
Streptomyces
, which demonstrate robust inhibition, and, in many cases, low toxicity, making them promising candidates for the development of novel antifungal agents.
Collapse
Affiliation(s)
| | - Aldo Rodrigues da Silva
- Programa de Pós-Graduação em Patologia, Hospital Universitário Antônio Pedro, Niterói, Brazil
| | - Norman Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, LABiEMol, Universidade Federal Fluminense, Niterói, Brazil
- Swansea University, Wales, UK
| | | | - Helena Carla Castro
- Programa de Pós-Graduação em Patologia, Hospital Universitário Antônio Pedro, Niterói, Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia, LABiEMol, Universidade Federal Fluminense, Niterói, Brazil
| | - Gerry A Quinn
- Institute of Biomedical Sciences, Ulster University, Coleraine, Ireland
| |
Collapse
|
6
|
Gao L, Kumaravel K, Xiong Q, Liang Y, Ju Z, Jiang Y, Zhang J. Actinomycins produced by endophyte Streptomyces sp. GLL-9 from navel orange plant exhibit high antimicrobial effect against Xanthomonas citri susp. citri and Penicillium italicum. PEST MANAGEMENT SCIENCE 2023; 79:4679-4693. [PMID: 37450767 DOI: 10.1002/ps.7668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/21/2023] [Accepted: 07/15/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Citrus canker and citrus blue mold are two severe diseases in citrus plants, which are mainly caused by Xanthomonas citri susp. citri (Xcc) and Penicillium italicum, respectively. The currently widely used pesticides for these two diseases are harmful to human health and the environment. Therefore, searching for novel antimicrobial agents, especially from natural resources, is getting increasing interest. RESULTS In this study, the crude extract of Streptomyces sp. GLL-9, an endophyte from a navel orange tree, was found to exhibit excellent antimicrobial effects against Xcc and P. italicum. Bioassay-guided isolation led to the discovery of three actinomycins (Acts), actinomycin X2 (Act-X2 ), actinomycin D (ActD), and actinomycin XOβ (Act-XOβ ). The MIC (minimum inhibitory concentration) values of Act-X2 , ActD, and Act-XOβ were 31.25, 62.50, and 62.50 μg mL-1 against Xcc, respectively, while 62.50 (Act-X2 ) and 125.00 μg mL-1 (ActD) against P. italicum, being better or comparable to the positive controls. The highest yield of Acts was obtained by solid-state fermentation with rice containing 1% L-tryptophan as a culture medium, being 6.03, 3.07, and 1.02 mg g-1 , for Act-X2 , ActD, and Act-XOβ , respectively. The ethyl acetate extract of Streptomyces sp. GLL-9 cultivated under the optimal fermentation conditions (EAE-1) can efficiently control these two citrus diseases by excessively producing reactive oxygen species (ROS) in both pathogens, damaging the cell membranes of P. italicum, and inhibiting the growth of Xcc. In addition, Act-X2 , ActD, and EAE-1 displayed broad-spectrum antifungal activity. CONCLUSION EAE-1 and Acts produced by Streptomyces sp. GLL-9 have high potential as novel antimicrobial agents against plant pathogens. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liangliang Gao
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| | - Kaliaperumal Kumaravel
- Department of Orthodontics, Saveetha Dental College, Saveetha University, Chennai, India
| | - Qin Xiong
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| | - Yan Liang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
| | - Zhiran Ju
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Yueming Jiang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
- South China Botanical Garden, Chinese Academy of Science, Guangzhou, China
| | - Jun Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, China
- South China Botanical Garden, Chinese Academy of Science, Guangzhou, China
| |
Collapse
|
7
|
Liu W, Ou P, Tian F, Liao J, Ma Y, Wang J, Jin X. Anti- Vibrio parahaemolyticus compounds from Streptomyces parvus based on Pan-genome and subtractive proteomics. Front Microbiol 2023; 14:1218176. [PMID: 37485508 PMCID: PMC10361664 DOI: 10.3389/fmicb.2023.1218176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Vibrio parahaemolyticus is a foodborne pathogen commonly found in seafood, and drug resistance poses significant challenges to its control. This study aimed to identify novel drug targets for antibacterial drug discovery. Methods To identify drug targets, we performed a pan-genome analysis on 58 strains of V. parahaemolyticus genomes to obtain core genes. Subsequently, subtractive proteomics and physiochemical checks were conducted on the core proteins to identify potential therapeutic targets. Molecular docking was then employed to screen for anti-V. parahaemolyticus compounds using a in-house compound library of Streptomyces parvus, chosen based on binding energy. The anti-V. parahaemolyticus efficacy of the identified compounds was further validated through a series of experimental tests. Results and Discussion Pangenome analysis of 58 V. parahaemolyticus genomes revealed that there were 1,392 core genes. After Subtractive proteomics and physiochemical checks, Flagellar motor switch protein FliN was selected as a therapeutic target against V. parahaemolyticus. FliN was modeled and docked with Streptomyces parvus source compounds, and Actinomycin D was identified as a potential anti-V. parahaemolyticus agent with a strong binding energy. Experimental verification confirmed its effectiveness in killing V. parahaemolyticus and significantly inhibiting biofilm formation and motility. This study is the first to use pan-genome and subtractive proteomics to identify new antimicrobial targets for V. parahaemolyticus and to identify the anti-V. parahaemolyticus effect of Actinomycin D. These findings suggest potential avenues for the development of new antibacterial drugs to control V. parahaemolyticus infections.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peiyu Ou
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fangyuan Tian
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jingyang Liao
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Ma
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie Wang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaobao Jin
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
Zhou W, Xie Z, Si R, Chen Z, Javeed A, Li J, Wu Y, Han B. Actinomycin-X2-Immobilized Silk Fibroin Film with Enhanced Antimicrobial and Wound Healing Activities. Int J Mol Sci 2023; 24:6269. [PMID: 37047243 PMCID: PMC10094675 DOI: 10.3390/ijms24076269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Actinomycin is a family of chromogenic lactone peptides that differ in their peptide portions of the molecule. An antimicrobial peptide, actinomycin X2 (Ac.X2), was produced through the fermentation of a Streptomyces cyaneofuscatus strain. Immobilization of Ac.X2 onto a prepared silk fibroin (SF) film was done through a carbodiimide reaction. The physical properties of immobilized Ac.X2 (antimicrobial films, AMFs) were analyzed by ATR-FTIR, SEM, AFM, and WCA. The findings from an in vitro study showed that AMFs had a more broad-spectrum antibacterial activity against both S. aureus and E. coli compared with free Ac.X2, which showed no apparent strong effect against E. coli. These AMFs showed a suitable degradation rate, good hemocompatibility, and reduced cytotoxicity in the biocompatibility assay. The results of in vivo bacterially infected wound healing experiments indicated that wound inflammation was prevented by AMFs, which promoted wound repair and improved the wound microenvironment. This study revealed that Ac.X2 transformation is a potential candidate for skin wound healing.
Collapse
Affiliation(s)
- Wenjing Zhou
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenxia Xie
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ranran Si
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zijun Chen
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ansar Javeed
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiaxing Li
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Wu
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bingnan Han
- Laboratory of Antiallergy Functional Molecules, Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
9
|
Chang Y, Xia S, Fei P, Feng H, Fan F, Liu Y, Qin L, Ma L, Song Q, Liu Y. Houttuynia cordata Thunb. crude extract inactivates Cronobacter sakazakii: Antibacterial components, antibacterial mechanism, and application as a natural disinfectant. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Transcriptomics Integrated with Metabolomics Reveals 2-Methoxy-1, 4-Naphthoquinone-Based Carbon Dots Induced Molecular Shifts in Penicillium italicum. J Fungi (Basel) 2022; 8:jof8050420. [PMID: 35628676 PMCID: PMC9145997 DOI: 10.3390/jof8050420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Penicillium italicum (P. italicum), a citrus blue mold, is a pathogenic fungus that greatly affects the postharvest quality of citrus fruits with significant economic loss. Our previous research showed that 2-methoxy-1, 4-naphthoquinone (MNQ) inhibited the growth of Penicillium italicum. However, the water dispersibility of MNQ will limit its further application. Herein, we synthesized MNQ-based carbon dots (2−CDs) with better water dispersibility, which showed a potential inhibitory effect on P. italicum (MIC = 2.8 μg/mL) better than that of MNQ (MIC = 5.0 μg/mL). Transcriptomics integrated with metabolomics reveals a total of 601 differentially enriched genes and 270 differentially accumulated metabolites that are co-mapped as disruptive activity on the cell cytoskeleton, glycolysis, and histone methylation. Furthermore, transmission electron microscopy analysis showed normal appearances and intracellular septum of P. italicum after treatment. These findings contribute tofurther understanding of the possible molecular action of 2−CDs.
Collapse
|
11
|
Xia X, Liu J, Huang L, Zhang X, Deng Y, Li F, Liu Z, Huang R. Molecular Details of Actinomycin D-Treated MRSA Revealed via High-Dimensional Data. Mar Drugs 2022; 20:md20020114. [PMID: 35200643 PMCID: PMC8878686 DOI: 10.3390/md20020114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is highly concerning as a principal infection pathogen. The investigation of higher effective natural anti-MRSA agents from marine Streptomyces parvulus has led to the isolation of actinomycin D, that showed potential anti-MRSA activity with MIC and MBC values of 1 and 8 μg/mL, respectively. Proteomics-metabolomics analysis further demonstrated a total of 261 differential proteins and 144 differential metabolites induced by actinomycin D in MRSA, and the co-mapped correlation network of omics, indicated that actinomycin D induced the metabolism pathway of producing the antibiotic sensitivity in MRSA. Furthermore, the mRNA expression levels of the genes acnA, ebpS, clfA, icd, and gpmA related to the key differential proteins were down-regulated measured by qRT-PCR. Molecular docking predicted that actinomycin D was bound to the targets of the two key differential proteins AcnA and Icd by hydrogen bonds and interacted with multiple amino acid residues of the proteins. Thus, these findings will provide a basic understanding to further investigation of actinomycin D as a potential anti-MRSA agent.
Collapse
Affiliation(s)
- Xuewei Xia
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (L.H.); (Y.D.); (F.L.); (Z.L.)
| | - Jun Liu
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China;
| | - Li Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (L.H.); (Y.D.); (F.L.); (Z.L.)
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Yunqin Deng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (L.H.); (Y.D.); (F.L.); (Z.L.)
| | - Fengming Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (L.H.); (Y.D.); (F.L.); (Z.L.)
| | - Zhiyuan Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (L.H.); (Y.D.); (F.L.); (Z.L.)
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.X.); (L.H.); (Y.D.); (F.L.); (Z.L.)
- Correspondence:
| |
Collapse
|