1
|
Ma Y, López‐Pujol J, Yan D, Zhou Z, Deng Z, Niu J. Complete chloroplast genomes of the hemiparasitic genus Cymbaria: Insights into comparative analysis, development of molecular markers, and phylogenetic relationships. Ecol Evol 2024; 14:e11677. [PMID: 38962021 PMCID: PMC11221886 DOI: 10.1002/ece3.11677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/18/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
The hemiparasitic tribe Cymbarieae (Orobanchaceae) plays a crucial role in elucidating the initial stage of the transition from autotrophism to heterotrophism. However, the complete chloroplast genome of the type genus Cymbaria has yet to be reported. In addition, the traditional Mongolian medicine Cymbaria daurica is frequently subjected to adulteration or substitution because of the minor morphological differences with Cymbaria mongolica. In this study, the complete chloroplast genomes of the two Cymbaria species were assembled and annotated, and those of other published 52 Orobanchaceae species were retrieved for comparative analyses. We found that the Cymbaria chloroplast genomes are characterized by pseudogenization or loss of stress-relevant genes (ndh) and a unique rbcL-matK inversion. Unlike the high variability observed in holoparasites, Cymbaria and other hemiparasites exhibit high similarity to autotrophs in genome size, guanine-cytosine (GC) content, and intact genes. Notably, four pairs of specific DNA barcodes were developed and validated to distinguish the medicinal herb from its adulterants. Phylogenetic analyses revealed that the genus Cymbaria and the Schwalbea-Siphonostegia clade are grouped into the tribe Cymbarieae, which forms a sister clade to the remaining Orobanchaceae parasitic lineages. Moreover, the diversification of monophyletic Cymbaria occurred during the late Miocene (6.72 Mya) in the Mongol-Chinese steppe region. Our findings provide valuable genetic resources for studying the phylogeny of Orobanchaceae and plant parasitism, and genetic tools to validate the authenticity of the traditional Mongolian medicine "Xinba.".
Collapse
Affiliation(s)
- Yang Ma
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Jordi López‐Pujol
- Botanic Institute of Barcelona (IBB)CSIC‐CMCNBBarcelonaSpain
- Escuela de Ciencias AmbientalesUniversidad Espíritu Santo (UEES)SamborondónEcuador
| | - Dongqing Yan
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Zhen Zhou
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Zekun Deng
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Jianming Niu
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian PlateauHohhotChina
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and TechnologyHohhotChina
| |
Collapse
|
2
|
Goedderz S, Clements MA, Bent SJ, Nicholls JA, Patel VS, Crayn DM, Schlüter PM, Nargar K. Plastid phylogenomics reveals evolutionary relationships in the mycoheterotrophic orchid genus Dipodium and provides insights into plastid gene degeneration. FRONTIERS IN PLANT SCIENCE 2024; 15:1388537. [PMID: 38938632 PMCID: PMC11210000 DOI: 10.3389/fpls.2024.1388537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
The orchid genus Dipodium R.Br. (Epidendroideae) comprises leafy autotrophic and leafless mycoheterotrophic species, with the latter confined to sect. Dipodium. This study examined plastome degeneration in Dipodium in a phylogenomic and temporal context. Whole plastomes were reconstructed and annotated for 24 Dipodium samples representing 14 species and two putatively new species, encompassing over 80% of species diversity in sect. Dipodium. Phylogenomic analysis based on 68 plastid loci including a broad outgroup sampling across Orchidaceae found that sect. Leopardanthus is the sister lineage to sect. Dipodium. Dipodium ensifolium, the only leafy autotrophic species in sect. Dipodium, was found to be a sister to all leafless, mycoheterotrophic species, supporting a single evolutionary origin of mycoheterotrophy in the genus. Divergence-time estimations found that Dipodium arose ca. 33.3 Ma near the lower boundary of the Oligocene and that crown diversification commenced in the late Miocene, ca. 11.3 Ma. Mycoheterotrophy in the genus was estimated to have evolved in the late Miocene, ca. 7.3 Ma, in sect. Dipodium. The comparative assessment of plastome structure and gene degradation in Dipodium revealed that plastid ndh genes were pseudogenised or physically lost in all Dipodium species, including in leafy autotrophic species of both Dipodium sections. Levels of plastid ndh gene degradation were found to vary among species as well as within species, providing evidence of relaxed selection for retention of the NADH dehydrogenase complex within the genus. Dipodium exhibits an early stage of plastid genome degradation, as all species were found to have retained a full set of functional photosynthesis-related genes and housekeeping genes. This study provides important insights into plastid genome degradation along the transition from autotrophy to mycoheterotrophy in a phylogenomic and temporal context.
Collapse
Affiliation(s)
- Stephanie Goedderz
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Mark A. Clements
- Centre for Australian National Biodiversity Research (joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Stephen J. Bent
- Data61, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Brisbane, QLD, Australia
| | - James A. Nicholls
- Australian National Insect Collection, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Vidushi S. Patel
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Darren M. Crayn
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Philipp M. Schlüter
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| |
Collapse
|
3
|
Burke JM, Koenemann DM. The complete annotated plastome sequences of six genera in the tropical woody Polygonaceae. BMC PLANT BIOLOGY 2024; 24:417. [PMID: 38760756 PMCID: PMC11100190 DOI: 10.1186/s12870-024-05144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND The Polygonaceae is a family well-known for its weeds, and edible plants, Fagopyrum (buckwheat) and Rheum (rhubarb), which are primarily herbaceous and temperate in distribution. Yet, the family also contains a number of lineages that are principally distributed in the tropics and subtropics. Notably, these lineages are woody, unlike their temperate relatives. To date, full-genome sequencing has focused on the temperate and herbaceous taxa. In an effort to increase breadth of genetic knowledge of the Polygonaceae, we here present six fully assembled and annotated chloroplast genomes from six of the tropical, woody genera: Coccoloba rugosa (a narrow and endangered Puerto Rican endemic), Gymnopodium floribundum, Neomillspaughia emarginata, Podopterus mexicanus, Ruprechtia coriacea, and Triplaris cumingiana. RESULTS These assemblies represent the first publicly-available assembled and annotated plastomes for the genera Podopterus, Gymnopodium, and Neomillspaughia, and the first assembled and annotated plastomes for the species Coccoloba rugosa, Ruprechtia coriacea, and Triplaris cumingiana. We found the assembled chloroplast genomes to be above the median size of Polygonaceae plastomes, but otherwise exhibit features typical of the family. The features of greatest sequence variation are found among the ndh genes and in the small single copy (SSC) region of the plastome. The inverted repeats show high GC content and little sequence variation across genera. When placed in a phylogenetic context, our sequences were resolved within the Eriogonoideae. CONCLUSIONS These six plastomes from among the tropical woody Polygonaceae appear typical within the family. The plastome assembly of Ruprechtia coriacea presented here calls into question the sequence identity of a previously published plastome assembly of R. albida.
Collapse
Affiliation(s)
- Janelle M Burke
- Dept. of Biology, Howard University, Washington, District of Columbia, USA
| | - Daniel M Koenemann
- Biology Department, Claflin University, Orangeburg, South Carolina, USA.
- Catholic Distance University, Charles Town, West Virginia, USA.
| |
Collapse
|
4
|
Dai J, Liu Q, Xu X, Tan Z, Lin Y, Gao X, Zhu S. Comparative and phylogenetic analysis of the complete chloroplast genomes of Uncaria (Rubiaceae) species. FRONTIERS IN PLANT SCIENCE 2023; 14:1271689. [PMID: 38186595 PMCID: PMC10766718 DOI: 10.3389/fpls.2023.1271689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024]
Abstract
The genus Uncaria is famous for its high medicinal value. However, the high morphological similarities and unclear interspecific genetic relationships have posed challenges to the classification and identification of Uncaria species. Here, we newly sequenced six chloroplast genomes of Uncaria species: U. hirsuta, U. rhynchophylla, U. rhynchophylloides, U. homomalla, U. sinensis, and U. lancifolia. Comparisons among the chloroplast genomes of Uncaria species showed their conservation in structure, gene content, and order. Ten highly variable loci could be potentially used as specific molecular markers in the identification of Uncaria species. The third position of codons tended to use A/U base, and natural selection contributed more to the formation of codon usage bias in comparison to mutation pressure. Four genes (rbcL, ndhF, rps8, and ycf2) were detected to be subjected to positive selection. Phylogenetic analysis showed that the genus Uncaria was a monophyletic group, belonging to the tribe Naucleeae. Moreover, U. sinensis was not a variant of U. rhynchophylla. U. rhynchophylloides and U. rhynchophylla were not the same species. The results of the comparative and phylogenetic analysis provide valuable references for further research studies of classification, identification, breeding improvement, and phylogenetic relationships in Uncaria species.
Collapse
Affiliation(s)
- Jiangpeng Dai
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiaozhen Liu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xingyuan Xu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhijie Tan
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuexia Lin
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoxia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuang Zhu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
5
|
Kharabian-Masouleh A, Furtado A, Alsubaie B, Al-Dossary O, Wu A, Al-Mssalem I, Henry R. Loss of plastid ndh genes in an autotrophic desert plant. Comput Struct Biotechnol J 2023; 21:5016-5027. [PMID: 37867970 PMCID: PMC10589726 DOI: 10.1016/j.csbj.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
Plant plastid genomes are highly conserved with most flowering plants having the same complement of essential plastid genes. Here, we report the loss of five of the eleven NADH dehydrogenase subunit genes (ndh) in the plastid of a desert plant jojoba (Simmondsia chinensis). The plastid genome of jojoba was 156,496 bp with one large single copy region (LSC), a very small single copy region (SSC) and two expanded inverted repeats (IRA + IRB). The NADH dehydrogenase (NDH) complex is comprised of several protein subunits, encoded by the ndh genes of the plastome and the nucleus. The ndh genes are critical to the proper functioning of the photosynthetic electron transport chain and protection of plants from oxidative stress. Most plants are known to contain all eleven ndh genes. Plants with missing or defective ndh genes are often heterotrophs either due to their complete or holo- or myco- parasitic nature. Plants with a defective NDH complex, caused by the deletion/pseudogenisation of some or all the ndh genes, survive in milder climates suggesting the likely extinction of plant lineages lacking these genes under harsh climates. Interestingly, some autotrophic plants do exist without ndh gene/s and can cope with high or low light. This implies that these plants are protected from oxidative stress by mechanisms excluding ndh genes. Jojoba has evolved mechanisms to cope with a non-functioning NDH complex and survives in extreme desert conditions with abundant sunlight and limited water.
Collapse
Affiliation(s)
- Ardashir Kharabian-Masouleh
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| | - Bader Alsubaie
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University (KFU), Al Hofuf, 36362 Saudi Arabia
| | - Othman Al-Dossary
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University (KFU), Al Hofuf, 36362 Saudi Arabia
| | - Alex Wu
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| | - Ibrahim Al-Mssalem
- College of Agriculture and Food Sciences, King Faisal University (KFU), Al Hofuf, 36362 Saudi Arabia
| | - Robert Henry
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Testone G, Lamprillo M, Gonnella M, Arnesi G, Sobolev AP, Aiese Cigliano R, Giannino D. The Chloroplast Genome of Endive ( Cichorium endivia L.): Cultivar Structural Variants and Transcriptome Responses to Stress Due to Rain Extreme Events. Genes (Basel) 2023; 14:1829. [PMID: 37761969 PMCID: PMC10531310 DOI: 10.3390/genes14091829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The chloroplast (cp) genome diversity has been used in phylogeny studies, breeding, and variety protection, and its expression has been shown to play a role in stress response. Smooth- and curly-leafed endives (Cichorium endivia var. latifolium and var. crispum) are of nutritional and economic importance and are the target of ever-changing breeding programmes. A reference cp genome sequence was assembled and annotated (cultivar 'Confiance'), which was 152,809 base pairs long, organized into the angiosperm-typical quadripartite structure, harboring two inverted repeats separated by the large- and short- single copy regions. The annotation included 136 genes, 90 protein-coding genes, 38 transfer, and 8 ribosomal RNAs and the sequence generated a distinct phyletic group within Asteraceae with the well-separated C. endivia and intybus species. SSR variants within the reference genome were mostly of tri-nucleotide type, and the cytosine to uracil (C/U) RNA editing recurred. The cp genome was nearly fully transcribed, hence sequence polymorphism was investigated by RNA-Seq of seven cultivars, and the SNP number was higher in smooth- than curly-leafed ones. All cultivars maintained C/U changes in identical positions, suggesting that RNA editing patterns were conserved; most cultivars shared SNPs of moderate impact on protein changes in the ndhD, ndhA, and psbF genes, suggesting that their variability may have a potential role in adaptive response. The cp transcriptome expression was investigated in leaves of plants affected by pre-harvest rainfall and rainfall excess plus waterlogging events characterized by production loss, compared to those of a cycle not affected by extreme rainfall. Overall, the analyses evidenced stress- and cultivar-specific responses, and further revealed that genes of the Cytochrome b6/f, and PSI-PSII systems were commonly affected and likely to be among major targets of extreme rain-related stress.
Collapse
Affiliation(s)
- Giulio Testone
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300, Monterotondo, 00015 Rome, Italy; (G.T.); (M.L.); (A.P.S.)
| | - Michele Lamprillo
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300, Monterotondo, 00015 Rome, Italy; (G.T.); (M.L.); (A.P.S.)
| | - Maria Gonnella
- Institute of Sciences of Food Production, National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Giuseppe Arnesi
- Enza Zaden Italia, Strada Statale Aurelia Km 96.400, Tarquinia, 01016 Viterbo, Italy;
| | - Anatoly Petrovich Sobolev
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300, Monterotondo, 00015 Rome, Italy; (G.T.); (M.L.); (A.P.S.)
| | | | - Donato Giannino
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300, Monterotondo, 00015 Rome, Italy; (G.T.); (M.L.); (A.P.S.)
| |
Collapse
|
7
|
Baldwin E, McNair M, Leebens-Mack J. Rampant chloroplast capture in Sarracenia revealed by plastome phylogeny. FRONTIERS IN PLANT SCIENCE 2023; 14:1237749. [PMID: 37711293 PMCID: PMC10497973 DOI: 10.3389/fpls.2023.1237749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Abstract
Introgression can produce novel genetic variation in organisms that hybridize. Sympatric species pairs in the carnivorous plant genus Sarracenia L. frequently hybridize, and all known hybrids are fertile. Despite being a desirable system for studying the evolutionary consequences of hybridization, the extent to which introgression occurs in the genus is limited to a few species in only two field sites. Previous phylogenomic analysis of Sarracenia estimated a highly resolved species tree from 199 nuclear genes, but revealed a plastid genome that is highly discordant with the species tree. Such cytonuclear discordance could be caused by chloroplast introgression (i.e. chloroplast capture) or incomplete lineage sorting (ILS). To better understand the extent to which introgression is occurring in Sarracenia, the chloroplast capture and ILS hypotheses were formally evaluated. Plastomes were assembled de-novo from sequencing reads generated from 17 individuals in addition to reads obtained from the previous study. Assemblies of 14 whole plastomes were generated and annotated, and the remaining fragmented assemblies were scaffolded to these whole-plastome assemblies. Coding sequence from 79 homologous genes were aligned and concatenated for maximum-likelihood phylogeny estimation. The plastome tree is extremely discordant with the published species tree. Plastome trees were simulated under the coalescent and tree distance from the species tree was calculated to generate a null distribution of discordance that is expected under ILS alone. A t-test rejected the null hypothesis that ILS could cause the level of discordance seen in the plastome tree, suggesting that chloroplast capture must be invoked to explain the discordance. Due to the extreme level of discordance in the plastome tree, it is likely that chloroplast capture has been common in the evolutionary history of Sarracenia.
Collapse
Affiliation(s)
- Ethan Baldwin
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Mason McNair
- Department of Plant & Environmental Science, Clemson University, Florence, SC, United States
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Chen J, Wang F, Zhou C, Ahmad S, Zhou Y, Li M, Liu Z, Peng D. Comparative Phylogenetic Analysis for Aerides (Aeridinae, Orchidaceae) Based on Six Complete Plastid Genomes. Int J Mol Sci 2023; 24:12473. [PMID: 37569853 PMCID: PMC10420012 DOI: 10.3390/ijms241512473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Aerides Lour. (Orchidaceae, Aeridinae) is a group of epiphytic orchids with high ornamental value, mainly distributed in tropical and subtropical forests, that comprises approximately 20 species. The species are of great value in floriculture and garden designing because of their beautiful flower shapes and colors. Although the morphological boundaries of Aerides are clearly defined, the relationship between Aerides and other closely related genera is still ambiguous in terms of phylogeny. To better understand their phylogenetic relationships, this study used next-generation sequencing technology to investigate the phylogeny and DNA barcoding of this taxonomic unit using genetic information from six Aerides plastid genomes. The quadripartite-structure plastomes ranged from 147,244 bp to 148,391 bp and included 120 genes. Among them, 74 were protein coding genes, 38 were tRNA genes and 8 were rRNA genes, while the ndh genes were pseudogenized or lost. Four non-coding mutational hotspots (rpl20-rpl33, psbM, petB, rpoB-trnCGCA, Pi > 0.06) were identified. A total of 71-77 SSRs and 19-46 long repeats (>30 bp) were recognized in Aerides plastomes, which were mostly located in the large single-copy region. Phylogenetic analysis indicated that Aerides was monophylic and sister to Renanthera. Moreover, our results confirmed that six Aerides species can be divided into three major clades. These findings provide assistance for species identification and DNA barcoding investigation in Aerides, as well as contributes to future research on the phylogenomics of Orchidaceae.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Kim KR, Park SY, Kim H, Hong JM, Kim SY, Yu JN. Complete Chloroplast Genome Determination of Ranunculus sceleratus from Republic of Korea (Ranunculaceae) and Comparative Chloroplast Genomes of the Members of the Ranunculus Genus. Genes (Basel) 2023; 14:1149. [PMID: 37372329 DOI: 10.3390/genes14061149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Ranunculus sceleratus (family: Ranunculaceae) is a medicinally and economically important plant; however, gaps in taxonomic and species identification limit its practical applicability. This study aimed to sequence the chloroplast genome of R. sceleratus from Republic of Korea. Chloroplast sequences were compared and analyzed among Ranunculus species. The chloroplast genome was assembled from Illumina HiSeq 2500 sequencing raw data. The genome was 156,329 bp and had a typical quadripartite structure comprising a small single-copy region, a large single-copy region, and two inverted repeats. Fifty-three simple sequence repeats were identified in the four quadrant structural regions. The region between the ndhC and trnV-UAC genes could be useful as a genetic marker to distinguish between R. sceleratus populations from Republic of Korea and China. The Ranunculus species formed a single lineage. To differentiate between Ranunculus species, we identified 16 hotspot regions and confirmed their potential using specific barcodes based on phylogenetic tree and BLAST-based analyses. The ndhE, ndhF, rpl23, atpF, rps4, and rpoA genes had a high posterior probability of codon sites in positive selection, while the amino acid site varied between Ranunculus species and other genera. Comparison of the Ranunculus genomes provides useful information regarding species identification and evolution that could guide future phylogenetic analyses.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - So Young Park
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Heesoo Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Jeong Min Hong
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Sun-Yu Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Jeong-Nam Yu
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| |
Collapse
|
10
|
Banerjee A, Stefanović S. A comparative study across the parasitic plants of Cuscuta subgenus Grammica (Convolvulaceae) reveals a possible loss of the plastid genome in its section Subulatae. PLANTA 2023; 257:66. [PMID: 36826697 DOI: 10.1007/s00425-023-04099-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Most species in Cuscuta subgenus Grammica retain many photosynthesis-related plastid genes, generally under purifying selection. A group of holoparasitic species in section Subulatae may have lost their plastid genomes entirely. The c. 153 species of plants belonging to Cuscuta subgenus Grammica are all obligate stem parasites. However, some have completely lost the ability to conduct photosynthesis while others retain photosynthetic machinery and genes. The plastid genome that primarily encodes key photosynthesis genes functions as a bellwether for how reliant plants are on primary production. This research assembles and analyses 17 plastomes across Cuscuta subgenus Grammica with the aim of characterizing the state of the plastome in each of its sections. By comparing the structure and content of plastid genomes across the subgenus, as well as by quantifying the selection acting upon each gene, we reconstructed the patterns of plastome change within the phylogenetic context for this group. We found that species in 13 of the 15 sections that comprise Grammica retain the bulk of plastid photosynthesis genes and are thus hemiparasitic. The complete loss of photosynthesis can be traced to two clades: the entire section Subulatae and a complex of three species within section Ceratophorae. We were unable to recover any significant plastome sequences from section Subulatae, suggesting that plastomes in these species are either drastically reduced or lost entirely.
Collapse
Affiliation(s)
- Arjan Banerjee
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
- Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 2Z9, Canada.
| | - Saša Stefanović
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
11
|
Yang Y, Jia Y, Zhao Y, Wang Y, Zhou T. Comparative chloroplast genomics provides insights into the genealogical relationships of endangered Tetraena mongolica and the chloroplast genome evolution of related Zygophyllaceae species. Front Genet 2022; 13:1026919. [PMID: 36568371 PMCID: PMC9773207 DOI: 10.3389/fgene.2022.1026919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
A comprehensive understanding of genetic background for rare species will provide an important theoretical basis for the future species management, monitoring and conservation. Tetraena mongolica is restrictedly distributed in the western Ordos plateau of China and has been listed as a national protected plant. We generated 13 chloroplast (cp) genomes of T. mongolica (size range of 106,062-106,230 bp) and conducted a series of comparative analyses of six Zygophyllaceae cp genomes. T. mongolica cp genome exhibited a quadripartite structure with drastically reduced inverted repeats (IRs, 4,315 bp) and undergone the loss of a suit of ndh genes and a copy of rRNAs. Furthermore, all the T. mongolica populations were divided into two genetic groups based on complete cp phylogenomics. In addition, notably variable genome size, gene order and structural changes had been observed among the six Zygophyllaceae cp genomes. Overall, our findings provide insights into the cp genome evolution mode and intraspecific relationships of T. mongolica, and provide a molecular basis for scientific conservation of this endangered plant.
Collapse
Affiliation(s)
- Yanci Yang
- School of Biological Science and Technology, Baotou Teachers’ College, Baotou, China
| | - Yun Jia
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, Shaanxi, China
| | - Yanling Zhao
- School of Biological Science and Technology, Baotou Teachers’ College, Baotou, China
| | - Yonglong Wang
- School of Biological Science and Technology, Baotou Teachers’ College, Baotou, China
| | - Tao Zhou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
12
|
Schröder L, Hegermann J, Pille P, Braun HP. The photosynthesis apparatus of European mistletoe (Viscum album). PLANT PHYSIOLOGY 2022; 190:1896-1914. [PMID: 35976139 PMCID: PMC9614478 DOI: 10.1093/plphys/kiac377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
European mistletoe (Viscum album) is known for its special mode of cellular respiration. It lacks the mitochondrial NADH dehydrogenase complex (Complex I of the respiratory chain) and has restricted capacities to generate mitochondrial adenosine triphosphate (ATP). Here, we present an investigation of the V. album energy metabolism taking place in chloroplasts. Thylakoids were purified from young V. album leaves, and membrane-bound protein complexes were characterized by Blue native polyacrylamide gel electrophoresis as well as by the complexome profiling approach. Proteins were systematically identified by label-free quantitative shotgun proteomics. We identified >1,800 distinct proteins (accessible at https://complexomemap.de/va_leaves), including nearly 100 proteins forming part of the protein complexes involved in the light-dependent part of photosynthesis. The photosynthesis apparatus of V. album has distinct features: (1) comparatively low amounts of Photosystem I; (2) absence of the NDH complex (the chloroplast pendant of mitochondrial Complex I involved in cyclic electron transport (CET) around Photosystem I); (3) reduced levels of the proton gradient regulation 5 (PGR5) and proton gradient regulation 5-like 1 (PGRL1) proteins, which offer an alternative route for CET around Photosystem I; (4) comparable amounts of Photosystem II and the chloroplast ATP synthase complex to other seed plants. Our data suggest a restricted capacity for chloroplast ATP biosynthesis by the photophosphorylation process. This is in addition to the limited ATP supply by the mitochondria. We propose a view on mistletoe's mode of life, according to which its metabolism relies to a greater extent on energy-rich compounds provided by the host trees.
Collapse
Affiliation(s)
- Lucie Schröder
- Institut für Pflanzgenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jan Hegermann
- Institut für Funktionelle und Angewandte Anatomie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Patrick Pille
- Institut für Pflanzgenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | | |
Collapse
|
13
|
Xiao T, He L, Yue L, Zhang Y, Lee SY. Comparative phylogenetic analysis of complete plastid genomes of Renanthera (Orchidaceae). Front Genet 2022; 13:998575. [PMID: 36186481 PMCID: PMC9515656 DOI: 10.3389/fgene.2022.998575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Owing to its attractive flower shape and color, Renanthera (Orchidaceae), comprising about 19 species, has significant ornamental value as a houseplant, in floral design and in landscape gardens. Two species of Renanthera are categorized as endangered and critically endangered in China’s Red List and international trade in these orchids is currently strictly monitored by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). This paper reports on the de novo assembled and annotated plastome of four species of Renanthera; R. citrina, R. coccinea, R. imschootiana, and R. philippinensis. The length of the plastome sequences ranged from 144,673 bp (R. imschootiana) to 149,007 bp (R. coccinea) with GC content of 36.6–36.7%. The plastomes showed a typical quadripartite structure, including a large single-copy (84,241–86,404 bp), a small single-copy (11,468–12,167 bp), and a pair of inverted repeats (24,482–25,715 bp) regions. Of the 120 genes detected, 74 were protein coding, 38 were tRNA, and eight were rRNA genes. The plastome of Renanthera is rather conserved, but nucleotide variations that could distinguish them apart are noticeable—the total number of tandem repeats ranged from 62 (in R. imschootiana) to 74 (in R. citrina); while the number of long repeats ranged from 21 (in R. imschootiana and R. philippinensis) to 43 (in R. citrina). Three hypervariable regions (psbI-trnS-GCU, trnG-GCC, rpl32) were identified. Phylogenetic analyses based on the CDS using maximum likelihood (ML) and Bayesian inference (BI) revealed that Renanthera is closely related to Holcoglossum, Neofinetia, Pendulorchis, and Vanda. The relationship between the four species of Renanthera was fully resolved; a monophyletic clade was formed and R. coccinea was recorded as the first to diverge from the rest. The genetic data obtained from this study could serve as a useful resource for species identification in Renanthera as well as contribute to future research on the phylogenomics of Orchidaceae.
Collapse
Affiliation(s)
- Tao Xiao
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Liefen He
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Liangliang Yue
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China
| | - Yonghong Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, China
- *Correspondence: Yonghong Zhang, ; Shiou Yih Lee,
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
- *Correspondence: Yonghong Zhang, ; Shiou Yih Lee,
| |
Collapse
|
14
|
Sabater B. Entropy Perspectives of Molecular and Evolutionary Biology. Int J Mol Sci 2022; 23:ijms23084098. [PMID: 35456917 PMCID: PMC9029946 DOI: 10.3390/ijms23084098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Attempts to find and quantify the supposed low entropy of organisms and its preservation are revised. The absolute entropy of the mixed components of non-living biomass (approximately −1.6 × 103 J K−1 L−1) is the reference to which other entropy decreases would be ascribed to life. The compartmentation of metabolites and the departure from the equilibrium of metabolic reactions account for reductions in entropy of 1 and 40–50 J K−1 L−1, respectively, and, though small, are distinctive features of living tissues. DNA and proteins do not supply significant decreases in thermodynamic entropy, but their low informational entropy is relevant for life and its evolution. No other living feature contributes significantly to the low entropy associated with life. The photosynthetic conversion of radiant energy to biomass energy accounts for most entropy (2.8 × 105 J K−1 carbon kg−1) produced by living beings. The comparatively very low entropy produced in other processes (approximately 4.8 × 102 J K−1 L−1 day−1 in the human body) must be rapidly exported outside as heat to preserve low entropy decreases due to compartmentation and non-equilibrium metabolism. Enzymes and genes are described, whose control minimizes the rate of production of entropy and could explain selective pressures in biological evolution and the rapid proliferation of cancer cells.
Collapse
Affiliation(s)
- Bartolomé Sabater
- Department of Life Sciences, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|