1
|
Chen J, Geng X, Li B, Xie J, Ma J, Qin Z, Wang M, Yang J. Homosalate and ERK Knockdown in the Modulation of Aurelia coerulea Metamorphosis by Regulating the PI3K Pathway and ERK Pathway. Curr Issues Mol Biol 2024; 46:11630-11645. [PMID: 39451570 PMCID: PMC11505814 DOI: 10.3390/cimb46100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Metamorphosis control is pivotal in preventing the outbreak of jellyfish, and it is often studied using common model organisms. The widespread use of the ultraviolet blocking agent homosalate in cosmetics poses a threat to marine ecosystems. Although the impact of homosalate on marine organisms has been extensively examined, there is a notable absence of research on its effects on jellyfish metamorphosis and the underlying mechanisms, warranting further investigation. In this study, we first established a study model by using 5-methoxy-2-methylindole to induce Aurelia coerulea metamorphosis, and selected homosalate as a PI3K agonist and an ERK agonist, while we used YS-49 as a specific PI3K agonist, as well as ERK knockdown, to observe their effect on the metamorphosis of Aurelia coerulea. The results showed that an Aurelia coerulea metamorphosis model was established successfully, and the PI3K agonist homosalate, YS-49, and the knockdown of ERK molecules could significantly delay the metamorphosis development of Aurelia coerulea. We propose that activating PI3K/Akt and inhibiting the ERK pathway are involved in the delayed development of Aurelia coerulea, which provides a new strategy for the prevention and control of jellyfish blooms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingke Wang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China; (J.C.); (X.G.); (B.L.); (J.X.); (Z.Q.)
| | - Jishun Yang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China; (J.C.); (X.G.); (B.L.); (J.X.); (Z.Q.)
| |
Collapse
|
2
|
Geng XY, Wang MK, Hou XC, Wang ZF, Wang Y, Zhang DY, Danso B, Wei DB, Shou ZY, Xiao L, Yang JS. Comparative Analysis of Tentacle Extract and Nematocyst Venom: Toxicity, Mechanism, and Potential Intervention in the Giant Jellyfish Nemopilema nomurai. Mar Drugs 2024; 22:362. [PMID: 39195478 DOI: 10.3390/md22080362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The giant jellyfish Nemopilema nomurai sting can cause local and systemic reactions; however, comparative analysis of the tentacle extract (TE) and nematocyst venom extract (NV), and its toxicity, mechanism, and potential intervention are still limited. This study compared venom from TE and NV for their composition, toxicity, and efficacy in vitro and in vivo used RAW264.7 cells and ICR mice. A total of 239 and 225 toxin proteins were identified in TE and NV by proteomics, respectively. Pathological analysis revealed that TE and NV caused heart and liver damage through apoptosis, necrosis, and inflammation, while TE exhibited higher toxicity ex vivo and in vivo. Biochemical markers indicated TE and NV elevated creatine kinase, lactatedehydrogenase, and aspartate aminotransferase, with the TE group showing a more significant increase. Transcriptomics and Western blotting indicated both venoms increased cytokines expression and MAPK signaling pathways. Additionally, 1 mg/kg PACOCF3 (the phospholipase A2 inhibitor) improved survival from 16.7% to 75% in mice. Our results indicate that different extraction methods impact venom activities, tentacle autolysis preserves toxin proteins and their toxicity, and PACOCF3 is a potential antidote, which establishes a good extraction method of jellyfish venom, expands our understanding of jellyfish toxicity, mechanism, and provides a promising intervention.
Collapse
Affiliation(s)
- Xiao-Yu Geng
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Ming-Ke Wang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Xiao-Chuan Hou
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Zeng-Fa Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yi Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Die-Yu Zhang
- College of Pharmacy, Bengbu Medical University, Bengbu 233030, China
| | - Blessing Danso
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Dun-Biao Wei
- Unit 92196 of the People's Liberation Army, Qingdao 266000, China
| | - Zhao-Yong Shou
- Faculty of Health Service, Naval Medical University, Shanghai 200433, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Ji-Shun Yang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| |
Collapse
|
3
|
Geng H, Li R, Teng L, Yu C, Wang W, Gao K, Li A, Liu S, Xing R, Yu H, Li P. Exploring the Efficacy of Hydroxybenzoic Acid Derivatives in Mitigating Jellyfish Toxin-Induced Skin Damage: Insights into Protective and Reparative Mechanisms. Mar Drugs 2024; 22:205. [PMID: 38786596 PMCID: PMC11122885 DOI: 10.3390/md22050205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. By employing an in vivo mouse model, the study delves into the therapeutic efficacy of these compounds. Through a combination of ELISA and Western blot analyses, histological examinations, and molecular assays, the study scrutinizes the inflammatory response, assesses skin damage and repair mechanisms, and investigates the compounds' ability to counteract venom effects. Our findings indicate that PCA and DHB significantly mitigate inflammation by modulating critical cytokines and pathways, altering collagen ratios through topical application, and enhancing VEGF and bFGF levels. Furthermore, both compounds demonstrate potential in neutralizing NnNV toxicity by inhibiting metalloproteinases and phospholipase-A2, showcasing the viability of small-molecule compounds in managing toxin-induced injuries.
Collapse
Affiliation(s)
- Hao Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Lichao Teng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Wenjie Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Aoyu Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
4
|
Li R, Yu H, Li A, Yu C, Li P. Identification and characterization of the key lethal toxin from jellyfish Cyanea nozakii. Int J Biol Macromol 2023; 230:123176. [PMID: 36621741 DOI: 10.1016/j.ijbiomac.2023.123176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Jellyfish Cyanea nozakii venom is a complex mixture of various toxins, most of which are proteinous biological macromolecules and are considered to be responsible for clinical symptoms or even death after a severe sting. Previous transcriptome and proteome analysis identified hundreds of toxins in the venom, including hemolysins, C-type lectin, phospholipase A2, potassium channel inhibitor, metalloprotease, etc. However, it is not clear which toxin in the venom plays the most important role in lethality. Herein, we isolated the key lethal toxin (Letoxcn) from jellyfish Cyanea nozakii using anion exchange chromatography, size-exclusion chromatography, and cation exchange chromatography. The molecular weight of Letoxcn is ∼50 kDa with the N-terminal sequences of QADAEKVNLPVGVCV. Peptide mass fingerprinting analysis of Letoxcn shows that it may have some motifs of phospholipase, metalloproteinase, thrombin-like enzyme, potassium channel toxin, etc. However, only metalloproteinase activity but no hemolytic, PLA2, or blood coagulation activity was observed from in vitro toxicity analysis. Overall, this study uncovered and characterized the key lethal toxin in the venom of jellyfish Cyanea nozakii, which will not only help to reveal the molecule mechanism of the lethality, but also develop effective treatment like antivenom for this jellyfish sting in the future.
Collapse
Affiliation(s)
- Rongfeng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Aoyu Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
5
|
Cunha SA, Dinis-Oliveira RJ. Raising Awareness on the Clinical and Forensic Aspects of Jellyfish Stings: A Worldwide Increasing Threat. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8430. [PMID: 35886286 PMCID: PMC9324653 DOI: 10.3390/ijerph19148430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023]
Abstract
Jellyfish are ubiquitous animals registering a high and increasing number of contacts with humans in coastal areas. These encounters result in a multitude of symptoms, ranging from mild erythema to death. This work aims to review the state-of-the-art regarding pathophysiology, diagnosis, treatment, and relevant clinical and forensic aspects of jellyfish stings. There are three major classes of jellyfish, causing various clinical scenarios. Most envenomations result in an erythematous lesion with morphological characteristics that may help identify the class of jellyfish responsible. In rare cases, the sting may result in delayed, persistent, or systemic symptoms. Lethal encounters have been described, but most of those cases happened in the Indo-Pacific region, where cubozoans, the deadliest jellyfish class, can be found. The diagnosis is mostly clinical but can be aided by dermoscopy, skin scrapings/sticky tape, confocal reflectance microscopy, immunological essays, among others. Treatment is currently based on preventing further envenomation, inactivating the venom, and alleviating local and systemic symptoms. However, the strategy used to achieve these effects remains under debate. Only one antivenom is currently used and covers merely one species (Chironex fleckeri). Other antivenoms have been produced experimentally but were not tested on human envenomation settings. The increased number of cases, especially due to climate changes, justifies further research in the study of clinical aspects of jellyfish envenoming.
Collapse
Affiliation(s)
- Sara Almeida Cunha
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; or
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; or
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal
- UCIBIO-REQUIMTE—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- MTG Research and Development Lab, 4200-604 Porto, Portugal
| |
Collapse
|