1
|
Liao TY, Boden A, King PC, Thissen H, Crawford RJ, Ivanova EP, Kingshott P. Cold-Spray Deposition of Antibacterial Molybdenum Coatings on Poly(dimethylsiloxane). ACS APPLIED BIO MATERIALS 2025; 8:1167-1185. [PMID: 39849900 DOI: 10.1021/acsabm.4c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Despite their widespread utilization in biomedical applications, these synthetic materials can be susceptible to microbial contamination, potentially compromising their functionality and increasing the risk of infection in patients. In this study, molybdenum (Mo), an essential metal in biological systems, was investigated as a Mo-based cold-sprayed coating on poly(dimethylsiloxane) (PDMS) for its potential use as biocompatible and antimicrobial surfaces for biomedical applications. Various cold-spray parameters were employed in the fabrication of Mo-embedded PDMS surfaces to alter the surface structure of the substrate, Mo loading density, and embedding layer thickness. Specifically, relatively low nozzle scanning speeds were used to develop high-density Mo-embedded PDMS surfaces. A comprehensive analysis was conducted to investigate how cold-spray processing parameters affect the surface topography, wettability, and chemical properties. The ability of the Mo-embedded PDMS to inhibit the colonization of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa bacterial species was demonstrated by both live/dead staining and disk diffusion methods. Surfaces with higher Mo loading densities significantly reduced the level of bacterial attachment and enhanced the bactericidal activity upon contact. Also, the level of Mo ion release over a 14-day period was measured and correlated to the properties of the substrate surface. Furthermore, attachment, viability, and proliferation of osteoblast-like MG63 cells were assessed to investigate the effect of Mo ion release on the biocompatibility of fabricated coatings. A notable decrease in cell viability and delayed growth of MG63 cells became evident after 7 days of incubation with the highly Mo-loaded samples. While this study enhanced our understanding regarding the engineering of composite materials for combatting microbial infections, the findings also suggest that the release of Mo ions may detrimentally affect osteoblast survival, potentially compromising the long-term functionality of orthopedic implants produced using this technique.
Collapse
Affiliation(s)
- Tzu-Ying Liao
- Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing Research Way, Clayton, Victoria 3168, Australia
| | - Andrew Boden
- Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peter C King
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing Research Way, Clayton, Victoria 3168, Australia
| | - Helmut Thissen
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing Research Way, Clayton, Victoria 3168, Australia
| | - Russell J Crawford
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Elena P Ivanova
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
2
|
Wanniarachchi CT, Arjunan A, Baroutaji A, Singh M, Robinson J, Vance A, Appiah M, Arafat A. 3D printed CoCrMo personalised load-bearing meta-scaffold for critical size tibial reconstruction. ANNALS OF 3D PRINTED MEDICINE 2024; 15:100163. [DOI: 10.1016/j.stlm.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
3
|
Serrano-Aroca Á, Cano-Vicent A, Sabater i Serra R, El-Tanani M, Aljabali A, Tambuwala MM, Mishra YK. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater Today Bio 2022; 16:100412. [PMID: 36097597 PMCID: PMC9463390 DOI: 10.1016/j.mtbio.2022.100412] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
Due to microbial infections dramatically affect cell survival and increase the risk of implant failure, scaffolds produced with antimicrobial materials are now much more likely to be successful. Multidrug-resistant infections without suitable prevention strategies are increasing at an alarming rate. The ability of cells to organize, develop, differentiate, produce a functioning extracellular matrix (ECM) and create new functional tissue can all be controlled by careful control of the extracellular microenvironment. This review covers the present state of advanced strategies to develop scaffolds with antimicrobial properties for bone, oral tissue, skin, muscle, nerve, trachea, cardiac and other tissue engineering applications. The review focuses on the development of antimicrobial scaffolds against bacteria and fungi using a wide range of materials, including polymers, biopolymers, glass, ceramics and antimicrobials agents such as antibiotics, antiseptics, antimicrobial polymers, peptides, metals, carbon nanomaterials, combinatorial strategies, and includes discussions on the antimicrobial mechanisms involved in these antimicrobial approaches. The toxicological aspects of these advanced scaffolds are also analyzed to ensure future technological transfer to clinics. The main antimicrobial methods of characterizing scaffolds’ antimicrobial and antibiofilm properties are described. The production methods of these porous supports, such as electrospinning, phase separation, gas foaming, the porogen method, polymerization in solution, fiber mesh coating, self-assembly, membrane lamination, freeze drying, 3D printing and bioprinting, among others, are also included in this article. These important advances in antimicrobial materials-based scaffolds for regenerative medicine offer many new promising avenues to the material design and tissue-engineering communities. Antibacterial, antifungal and antibiofilm scaffolds. Antimicrobial scaffold fabrication techniques. Antimicrobial biomaterials for tissue engineering applications. Antimicrobial characterization methods of scaffolds. Bone, oral tissue, skin, muscle, nerve, trachea, cardiac, among other applications.
Collapse
|
4
|
Buj-Corral I, Tejo-Otero A. 3D Printing of Bioinert Oxide Ceramics for Medical Applications. J Funct Biomater 2022; 13:155. [PMID: 36135590 PMCID: PMC9505679 DOI: 10.3390/jfb13030155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Three-dimensionally printed metals and polymers have been widely used and studied in medical applications, yet ceramics also require attention. Ceramics are versatile materials thanks to their excellent properties including high mechanical properties and hardness, good thermal and chemical behavior, and appropriate, electrical, and magnetic properties, as well as good biocompatibility. Manufacturing complex ceramic structures employing conventional methods, such as ceramic injection molding, die pressing or machining is extremely challenging. Thus, 3D printing breaks in as an appropriate solution for complex shapes. Amongst the different ceramics, bioinert ceramics appear to be promising because of their physical properties, which, for example, are similar to those of a replaced tissue, with minimal toxic response. In this way, this review focuses on the different medical applications that can be achieved by 3D printing of bioinert ceramics, as well as on the latest advances in the 3D printing of bioinert ceramics. Moreover, an in-depth comparison of the different AM technologies used in ceramics is presented to help choose the appropriate methods depending on the part geometry.
Collapse
|
5
|
Wanniarachchi CT, Arjunan A, Baroutaji A, Singh M. Mechanical performance of additively manufactured cobalt-chromium-molybdenum auxetic meta-biomaterial bone scaffolds. J Mech Behav Biomed Mater 2022; 134:105409. [PMID: 36037704 DOI: 10.1016/j.jmbbm.2022.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022]
Abstract
Auxetic meta-biomaterials offer unconventional strain behaviour owing to their negative Poisson's ratio (-υ) leading to deformation modes and mechanical properties different to traditional cellular biomaterials. This can lead to favourable outcomes for load-bearing tissue engineering constructs such as bone scaffolds. Emerging early-stage studies have shown the potential of auxetic architecture in increasing cell proliferation and tissue reintegration owing to their -υ. However, research on the development of CoCrMo auxetic meta-biomaterials including bone scaffolds or implants is yet to be reported. In this regard, this paper proposes a potential framework for the development of auxetic meta-biomaterials that can be printed on demand while featuring porosity requirements suitable for load-bearing bone scaffolds. Overall, the performance of five CoCrMo auxetic meta-biomaterial scaffolds characterised under two scenarios for their potential to offer near-zero and high negative Poisson's ratio is demonstrated. Ashby's criterion followed by prototype testing was employed to evaluate the mechanical performance and failure modes of the auxetic meta-biomaterial scaffolds under uniaxial compression. The best performing scaffold architectures are identified through a multi-criteria decision-making procedure combining 'analytic hierarchy process' (AHP) and 'technique for order of preference by similarity to ideal solution' (TOPSIS). The results found the Poisson's ratio for the meta-biomaterial architectures to be in the range of -0.1 to -0.24 at a porosity range of 73-82%. It was found that the meta-biomaterial scaffold (AX1) that offered the highest auxeticity also showed the highest elastic modulus, yield, and ultimate strength of 1.66 GPa, 56 MPa and 158 MPa, respectively. The study demonstrates that the elastic modulus, yield stress, and Poisson's ratio of auxetic meta-biomaterials are primarily influenced by the underlying meta-cellular architecture followed by relative density offering a secondary influence.
Collapse
Affiliation(s)
- Chameekara T Wanniarachchi
- Additive Manufacturing of Functional Materials (AMFM) Research Group, Centre for Engineering Innovation and Research, University of Wolverhampton, Telford Campus, Telford, TF2 9NT, UK; School of Engineering, Computing and Mathematical Sciences, Faculty of Science and Engineering, University of Wolverhampton, Telford Campus, Telford, TF2 9NT, UK
| | - Arun Arjunan
- Additive Manufacturing of Functional Materials (AMFM) Research Group, Centre for Engineering Innovation and Research, University of Wolverhampton, Telford Campus, Telford, TF2 9NT, UK; School of Engineering, Computing and Mathematical Sciences, Faculty of Science and Engineering, University of Wolverhampton, Telford Campus, Telford, TF2 9NT, UK.
| | - Ahmad Baroutaji
- Additive Manufacturing of Functional Materials (AMFM) Research Group, Centre for Engineering Innovation and Research, University of Wolverhampton, Telford Campus, Telford, TF2 9NT, UK; School of Engineering, Computing and Mathematical Sciences, Faculty of Science and Engineering, University of Wolverhampton, Telford Campus, Telford, TF2 9NT, UK
| | - Manpreet Singh
- Additive Manufacturing of Functional Materials (AMFM) Research Group, Centre for Engineering Innovation and Research, University of Wolverhampton, Telford Campus, Telford, TF2 9NT, UK; School of Engineering, Computing and Mathematical Sciences, Faculty of Science and Engineering, University of Wolverhampton, Telford Campus, Telford, TF2 9NT, UK
| |
Collapse
|
6
|
Serrano-Aroca Á, Tambuwala MM, Birkett M. Frontiers in Antimicrobial Materials. Int J Mol Sci 2022; 23:ijms23148047. [PMID: 35887389 PMCID: PMC9325180 DOI: 10.3390/ijms23148047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Affiliation(s)
- Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
- Correspondence:
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Colerine BT52 2FB, UK;
| | - Martin Birkett
- Department of Mechanical and Construction Engineering, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, UK;
| |
Collapse
|
7
|
Serrano-Aroca Á. Antiviral Characterization of Advanced Materials: Use of Bacteriophage Phi 6 as Surrogate of Enveloped Viruses Such as SARS-CoV-2. Int J Mol Sci 2022; 23:5335. [PMID: 35628148 PMCID: PMC9141689 DOI: 10.3390/ijms23105335] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
The bacteriophage phi 6 is a virus that belongs to a different Baltimore group than SARS-CoV-2 (group III instead of IV). However, it has a round-like shape and a lipid envelope like SARS-CoV-2, which render it very useful to be used as a surrogate of this infectious pathogen for biosafety reasons. Thus, recent antiviral studies have demonstrated that antiviral materials such as calcium alginate hydrogels, polyester-based fabrics coated with benzalkonium chloride (BAK), polyethylene terephthalate (PET) coated with BAK and polyester-based fabrics coated with cranberry extracts or solidified hand soap produce similar log reductions in viral titers of both types of enveloped viruses after similar viral contact times. Therefore, researchers with no access to biosafety level 3 facilities can perform antiviral tests of a broad range of biomaterials, composites, nanomaterials, nanocomposites, coatings and compounds against the bacteriophage phi 6 as a biosafe viral model of SARS-CoV-2. In fact, this bacteriophage has been used as a surrogate of SARS-CoV-2 to test a broad range of antiviral materials and compounds of different chemical natures (polymers, metals, alloys, ceramics, composites, etc.) and forms (films, coatings, nanomaterials, extracts, porous supports produced by additive manufacturing, etc.) during the current pandemic. Furthermore, this biosafe viral model has also been used as a surrogate of SARS-CoV-2 and other highly pathogenic enveloped viruses such as Ebola and influenza in a wide range of biotechnological applications.
Collapse
Affiliation(s)
- Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain
| |
Collapse
|
8
|
Hurtado A, Aljabali AAA, Mishra V, Tambuwala MM, Serrano-Aroca Á. Alginate: Enhancement Strategies for Advanced Applications. Int J Mol Sci 2022; 23:4486. [PMID: 35562876 PMCID: PMC9102972 DOI: 10.3390/ijms23094486] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate is an excellent biodegradable and renewable material that is already used for a broad range of industrial applications, including advanced fields, such as biomedicine and bioengineering, due to its excellent biodegradable and biocompatible properties. This biopolymer can be produced from brown algae or a microorganism culture. This review presents the principles, chemical structures, gelation properties, chemical interactions, production, sterilization, purification, types, and alginate-based hydrogels developed so far. We present all of the advanced strategies used to remarkably enhance this biopolymer's physicochemical and biological characteristics in various forms, such as injectable gels, fibers, films, hydrogels, and scaffolds. Thus, we present here all of the material engineering enhancement approaches achieved so far in this biopolymer in terms of mechanical reinforcement, thermal and electrical performance, wettability, water sorption and diffusion, antimicrobial activity, in vivo and in vitro biological behavior, including toxicity, cell adhesion, proliferation, and differentiation, immunological response, biodegradation, porosity, and its use as scaffolds for tissue engineering applications. These improvements to overcome the drawbacks of the alginate biopolymer could exponentially increase the significant number of alginate applications that go from the paper industry to the bioprinting of organs.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
9
|
Birkett M, Dover L, Cherian Lukose C, Wasy Zia A, Tambuwala MM, Serrano-Aroca Á. Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces. Int J Mol Sci 2022; 23:1162. [PMID: 35163084 PMCID: PMC8835042 DOI: 10.3390/ijms23031162] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
International interest in metal-based antimicrobial coatings to control the spread of bacteria, fungi, and viruses via high contact human touch surfaces are growing at an exponential rate. This interest recently reached an all-time high with the outbreak of the deadly COVID-19 disease, which has already claimed the lives of more than 5 million people worldwide. This global pandemic has highlighted the major role that antimicrobial coatings can play in controlling the spread of deadly viruses such as SARS-CoV-2 and scientists and engineers are now working harder than ever to develop the next generation of antimicrobial materials. This article begins with a review of three discrete microorganism-killing phenomena of contact-killing surfaces, nanoprotrusions, and superhydrophobic surfaces. The antimicrobial properties of metals such as copper (Cu), silver (Ag), and zinc (Zn) are reviewed along with the effects of combining them with titanium dioxide (TiO2) to create a binary or ternary contact-killing surface coatings. The self-cleaning and bacterial resistance of purely structural superhydrophobic surfaces and the potential of physical surface nanoprotrusions to damage microbial cells are then considered. The article then gives a detailed discussion on recent advances in attempting to combine these individual phenomena to create super-antimicrobial metal-based coatings with binary or ternary killing potential against a broad range of microorganisms, including SARS-CoV-2, for high-touch surface applications such as hand rails, door plates, and water fittings on public transport and in healthcare, care home and leisure settings as well as personal protective equipment commonly used in hospitals and in the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Martin Birkett
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Lynn Dover
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;
| | - Cecil Cherian Lukose
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Abdul Wasy Zia
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|