1
|
Li X, Ding H, Feng G, Huang Y. Role of angiotensin converting enzyme in pathogenesis associated with immunity in cardiovascular diseases. Life Sci 2024; 352:122903. [PMID: 38986897 DOI: 10.1016/j.lfs.2024.122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Angiotensin converting enzyme (ACE) is not only a critical component in the renin-angiotensin system (RAS), but also suggested as an important mediator for immune response and activity, such as immune cell mobilization, metabolism, biogenesis of immunoregulatory molecules, etc. The chronic duration of cardiovascular diseases (CVD) has been increasingly considered to be triggered by uncontrolled pathologic immune reactions from myeloid cells and lymphocytes. Considering the potential anti-inflammatory effect of the traditional antihypertensive ACE inhibitor (ACEi), we attempt to elucidate whether ACE and its catalytically relevant substances as well as signaling pathways play a role in the immunity-related pathogenesis of common CVD, such as arterial hypertension, atherosclerosis and arrythmias. ACEi was also reported to benefit the prognoses of COVID-19-positive patients with CVD, and COVID-19 disease with preexisting CVD or subsequent cardiovascular damage is featured by a significant influx of immune cells and proinflammatory molecules, suggesting that ACE may also participate in COVID-19 induced cardiovascular injury, because COVID-19 disease basically triggers an overactive pathologic immune response. Hopefully, the ACE inhibition and manipulation of those associated bioactive signals could supplement the current medicinal management of various CVD and bring greater benefit to patients' cardiovascular health.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Huasheng Ding
- Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Gaoke Feng
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Galis P, Bartosova L, Farkasova V, Bartekova M, Ferenczyova K, Rajtik T. Update on clinical and experimental management of diabetic cardiomyopathy: addressing current and future therapy. Front Endocrinol (Lausanne) 2024; 15:1451100. [PMID: 39140033 PMCID: PMC11319149 DOI: 10.3389/fendo.2024.1451100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe secondary complication of type 2 diabetes mellitus (T2DM) that is diagnosed as a heart disease occurring in the absence of any previous cardiovascular pathology in diabetic patients. Although it is still lacking an exact definition as it combines aspects of both pathologies - T2DM and heart failure, more evidence comes forward that declares DCM as one complex disease that should be treated separately. It is the ambiguous pathological phenotype, symptoms or biomarkers that makes DCM hard to diagnose and screen for its early onset. This re-view provides an updated look on the novel advances in DCM diagnosis and treatment in the experimental and clinical settings. Management of patients with DCM proposes a challenge by itself and we aim to help navigate and advice clinicians with early screening and pharmacotherapy of DCM.
Collapse
Affiliation(s)
- Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Kristina Ferenczyova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Passaglia P, Kanashiro A, Batista Silva H, Carlos Carvalho Navegantes L, Lacchini R, Capellari Cárnio E, Branco LGS. Diminazene aceturate attenuates systemic inflammation via microbiota gut-5-HT brain-spleen sympathetic axis in male mice. Brain Behav Immun 2024; 119:105-119. [PMID: 38548186 DOI: 10.1016/j.bbi.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The sympathetic arm of the inflammatory reflex is the efferent pathway through which the central nervous system (CNS) can control peripheral immune responses. Diminazene aceturate (DIZE) is an antiparasitic drug that has been reported to exert protective effects on various experimental models of inflammation. However, the pathways by which DIZE promotes a protective immunomodulatory effects still need to be well established, and no studies demonstrate the capacity of DIZE to modulate a neural reflex to control inflammation. C57BL/6 male mice received intraperitoneal administration of DIZE (2 mg/Kg) followed by lipopolysaccharide (LPS, 5 mg/Kg, i.p.). Endotoxemic animals showed hyperresponsiveness to inflammatory signals, while those treated with DIZE promoted the activation of the inflammatory reflex to attenuate the inflammatory response during endotoxemia. The unilateral cervical vagotomy did not affect the anti-inflammatory effect of DIZE in the spleen and serum. At the same time, splenic denervation attenuated tumor necrosis factor (TNF) synthesis in the spleen and serum. Using broad-spectrum antibiotics for two weeks showed that LPS modulated the microbiota to induce a pro-inflammatory profile in the intestine and reduced the serum concentration of tryptophan and serotonin (5-HT), while DIZE restored serum tryptophan and increased the hypothalamic 5-HT levels. Furthermore, the treatment with 4-Chloro-DL-phenylalanine (pcpa, an inhibitor of 5-HT synthesis) abolished the anti-inflammatory effects of the DIZE in the spleen. Our results indicate that DIZE promotes microbiota modulation to increase central 5-HT levels and activates the efferent sympathetic arm of the inflammatory reflex to control splenic TNF production in endotoxemic mice.
Collapse
Affiliation(s)
- Patrícia Passaglia
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Alexandre Kanashiro
- Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Hadder Batista Silva
- Department of General Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Evelin Capellari Cárnio
- Department of General Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Puri A, Giri M, Huang H, Zhao Q. Blood urea nitrogen to creatinine ratio is associated with in-hospital mortality in critically ill patients with venous thromboembolism: a retrospective cohort study. Front Cardiovasc Med 2024; 11:1400915. [PMID: 38938654 PMCID: PMC11208632 DOI: 10.3389/fcvm.2024.1400915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Background The relationship between the blood urea nitrogen to creatinine ratio (BCR) and the risk of in-hospital mortality among intensive care unit (ICU) patients diagnosed with venous thromboembolism (VTE) remains unclear. This study aimed to assess the relationship between BCR upon admission to the ICU and in-hospital mortality in critically ill patients with VTE. Methods This retrospective cohort study included patients diagnosed with VTE from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The primary endpoint was in-hospital mortality. Univariate and multivariate logistic regression analyses were conducted to evaluate the prognostic significance of the BCR. Receiver operating characteristic (ROC) curve analysis was utilized to determine the optimal cut-off value of BCR. Additionally, survival analysis using a Kaplan-Meier curve was performed. Results A total of 2,560 patients were included, with a median age of 64.5 years, and 55.5% were male. Overall, the in-hospital mortality rate was 14.6%. The optimal cut-off value of the BCR for predicting in-hospital mortality in critically ill VTE patients was 26.84. The rate of in-hospital mortality among patients categorized in the high BCR group was significantly higher compared to those in the low BCR group (22.6% vs. 12.2%, P < 0.001). The multivariable logistic regression analysis results indicated that, even after accounting for potential confounding factors, patients with elevated BCR demonstrated a notably increased in-hospital mortality rate compared to those with lower BCR levels (all P < 0.05), regardless of the model used. Patients in the high BCR group exhibited a 77.77% higher risk of in-hospital mortality than those in the low BCR group [hazard ratio (HR): 1.7777; 95% CI: 1.4016-2.2547]. Conclusion An elevated BCR level was independently linked with an increased risk of in-hospital mortality among critically ill patients diagnosed with VTE. Given its widespread availability and ease of measurement, BCR could be a valuable tool for risk stratification and prognostic prediction in VTE patients.
Collapse
Affiliation(s)
- Anju Puri
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mohan Giri
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huanhuan Huang
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghua Zhao
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
McGrath MS, Wentworth BJ. The Renin-Angiotensin System in Liver Disease. Int J Mol Sci 2024; 25:5807. [PMID: 38891995 PMCID: PMC11172481 DOI: 10.3390/ijms25115807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
The renin-angiotensin system (RAS) is a complex homeostatic entity with multiorgan systemic and local effects. Traditionally, RAS works in conjunction with the kidney to control effective arterial circulation, systemic vascular resistance, and electrolyte balance. However, chronic hepatic injury and resulting splanchnic dilation may disrupt this delicate balance. The role of RAS in liver disease, however, is even more extensive, modulating hepatic fibrosis and portal hypertension. Recognition of an alternative RAS pathway in the past few decades has changed our understanding of RAS in liver disease, and the concept of opposing vs. "rebalanced" forces is an ongoing focus of research. Whether RAS inhibition is beneficial in patients with chronic liver disease appears to be context-dependent, but further study is needed to optimize clinical management and reduce organ-specific morbidity and mortality. This review presents the current understanding of RAS in liver disease, acknowledges areas of uncertainty, and describes potential areas of future investigation.
Collapse
Affiliation(s)
- Mary S. McGrath
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Brian J. Wentworth
- Division of Gastroenterology & Hepatology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
6
|
Tang Q, Fan F, Chen L, Chen Y, Yuan L, Wang L, Xu H, Zhang Y, Cheng Y. Identification of blood exosomal metabolomic profiling for high-altitude cerebral edema. Sci Rep 2024; 14:11585. [PMID: 38773195 PMCID: PMC11109199 DOI: 10.1038/s41598-024-62360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
High-altitude cerebral edema (HACE) is a severe neurological condition that can occur at high altitudes. It is characterized by the accumulation of fluid in the brain, leading to a range of symptoms, including severe headache, confusion, loss of coordination, and even coma and death. Exosomes play a crucial role in intercellular communication, and their contents have been found to change in various diseases. This study analyzed the metabolomic characteristics of blood exosomes from HACE patients compared to those from healthy controls (HCs) with the aim of identifying specific metabolites or metabolic pathways associated with the development of HACE conditions. A total of 21 HACE patients and 21 healthy controls were recruited for this study. Comprehensive metabolomic profiling of the serum exosome samples was conducted using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS). Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed to identify the metabolic pathways affected in HACE patients. Twenty-six metabolites, including ( +)-camphoric acid, choline, adenosine, adenosine 5'-monophosphate, deoxyguanosine 5'-monophosphate, guanosine, and hypoxanthine-9-β-D-arabinofuranoside, among others, exhibited significant changes in expression in HACE patients compared to HCs. Additionally, these differentially abundant metabolites were confirmed to be potential biomarkers for HACE. KEGG pathway enrichment analysis revealed several pathways that significantly affect energy metabolism regulation (such as purine metabolism, thermogenesis, and nucleotide metabolism), estrogen-related pathways (the estrogen signaling pathway, GnRH signaling pathway, and GnRH pathway), cyclic nucleotide signaling pathways (the cGMP-PKG signaling pathway and cAMP signaling pathway), and hormone synthesis and secretion pathways (renin secretion, parathyroid hormone synthesis, secretion and action, and aldosterone synthesis and secretion). In patients with HACE, adenosine, guanosine, and hypoxanthine-9-β-D-arabinofuranoside were negatively correlated with height. Deoxyguanosine 5'-monophosphate is negatively correlated with weight and BMI. Additionally, LPE (18:2/0:0) and pregnanetriol were positively correlated with age. This study identified potential biomarkers for HACE and provided valuable insights into the underlying metabolic mechanisms of this disease. These findings may lead to potential targets for early diagnosis and therapeutic intervention in HACE patients.
Collapse
Affiliation(s)
- Quan Tang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Fangcheng Fan
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of BrainScience-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Lin Yuan
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Lili Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Huan Xu
- Department of Clinical Laboratory, The General Hospital of Tibet Military Command, Lhasa, China.
| | - Yan Zhang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
| | - Yong Cheng
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
7
|
Ortiz RM, Satou R, Zhuo JL, Nishiyama A. The Renin-Angiotensin-Aldosterone System in Metabolic Diseases and Other Pathologies. Int J Mol Sci 2023; 24:7413. [PMID: 37108577 PMCID: PMC10138637 DOI: 10.3390/ijms24087413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
It has been our pleasure to have been able to develop two special issues within the International Journal of Molecular Sciences: (1) Renin-Angiotensin-Aldosterone System in Pathologies and (2) Renin-Angiotensin-Aldosterone System in Metabolism & Disease [...].
Collapse
Affiliation(s)
- Rudy M. Ortiz
- Department of Molecular & Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Ryousuke Satou
- Department of Physiology and The Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.S.); (J.L.Z.)
| | - Jia L. Zhuo
- Department of Physiology and The Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.S.); (J.L.Z.)
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa 761-0793, Japan;
| |
Collapse
|
8
|
Zhao K, Xu T, Mao Y, Wu X, Hua D, Sheng Y, Li P. Alamandine alleviated heart failure and fibrosis in myocardial infarction mice. Biol Direct 2022; 17:25. [PMID: 36167556 PMCID: PMC9516792 DOI: 10.1186/s13062-022-00338-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Alamandine (Ala) is the newest identified peptide of the renin-angiotensin system and has protective effect on myocyte hypertrophy. However, it is still unclear whether Ala can alleviate heart failure (HF). The aim of this study was to explore the effects of Ala on HF and the related cardiac fibrosis, and to probe the mechanism. HF model was induced by myocardial infarction (MI) in mice. Four weeks after MI, Ala was administrated by intraperitoneal injection for two weeks. Ala injection significantly improved cardiac dysfunction of MI mice in vivo. The cardiac fibrosis and the related biomarkers were attenuated after Ala administration in HF mice in vivo. The increases of collagen I, alpha-smooth muscle actin and transforming growth factor-beta induced by oxygen–glucose deprivation (OGD) in neonatal rat cardiac fibroblasts (NRCFs) were inhibited by Ala treatment in vitro. The biomarkers of apoptosis were elevated in NRCFs induced by OGD, which were attenuated after treating with Ala in vitro. The enhancement of oxidative stress in the heart of MI mice or in the NRCFs treated with OGD was suppressed by treating with Ala in vivo and in vitro. These effects of Ala were reversed by tBHP, an exogenous inducer of oxidative stress in vitro. These results demonstrated that Ala could alleviate cardiac dysfunction and attenuate cardiac fibrosis via inhibition of oxidative stress.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Tianhua Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yukang Mao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Xiaoguang Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Dongxu Hua
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yanhui Sheng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China. .,Department of Cardiology, Jiangsu Province Hospital, Nanjing, Jiangsu, China.
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
9
|
Zhang P, Wang Y, Xing X, Li H, Wang X, Zhang H, Wang X, Li X, Li Y, Wang Q. Electroacupuncture Treats Myocardial Infarction by Influencing the Regulation of Substance P in the Neurovascular to Modulate PGI2/TXA2 Metabolic Homeostasis via PI3K/AKT Pathway: A Bioinformatics-Based Multiomics and Experimental Study. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5367753. [PMID: 36238480 PMCID: PMC9553354 DOI: 10.1155/2022/5367753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022]
Abstract
Acute myocardial infarction (AMI) is the most severe form of coronary heart disease caused by ischemia and hypoxia. The study is aimed at investigating the role of neuropeptides and the mechanism of electroacupuncture (EA) in acute myocardial infarction (AMI) treatment. Compared with the normal population, a significant increase in substance P (SP) was observed in the serum of patients with AMI. PGI2 expression was increased in the SP-treated AMI mouse model, and TXA2 expression was decreased. And PI3K pathway-related genes, including Pik3ca, Akt, and Mtor, were upregulated in myocardial tissue of SP-treated AMI patients. Human cardiomyocyte cell lines (HCM) treated with SP increased mRNA and protein expression of PI3K pathway-related genes (Pik3ca, Pik3cb, Akt, and Mtor). Compared to MI control and EA-treated MI rat models, Myd88, MTOR, Akt1, Sp, and Irak1 were differentially expressed, consistent with in vivo and in vitro studies. EA treatment significantly enriched PI3K/AKT signaling pathway genes within MI-associated differentially expressed genes (DEGs) according to Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, it was confirmed by molecular docking analysis that PIK3CA, AKT1, and mTOR form stable dockings with neuropeptide SP. PI3K/AKT pathway activity may be affected directly or indirectly by EA via SP, which corrects the PGI2/TXA2 metabolic imbalance in AMI. MI treatment is now better understood as a result of this finding.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Yanyan Wang
- Taian Traffic Hospital, Taian, 271000, China
| | - Xiaomin Xing
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Hu Li
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Xiaojing Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Hanlin Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Xin Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Yanju Li
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| |
Collapse
|