1
|
Strobel J, Yousefzadeh-Nowshahr E, Deininger K, Bohn KP, von Arnim CAF, Otto M, Solbach C, Anderl-Straub S, Polivka D, Fissler P, Glatting G, Riepe MW, Higuchi M, Beer AJ, Ludolph A, Winter G. Exploratory Tau PET/CT with [11C]PBB3 in Patients with Suspected Alzheimer's Disease and Frontotemporal Lobar Degeneration: A Pilot Study on Correlation with PET Imaging and Cerebrospinal Fluid Biomarkers. Biomedicines 2024; 12:1460. [PMID: 39062033 PMCID: PMC11274645 DOI: 10.3390/biomedicines12071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Accurately diagnosing Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) is challenging due to overlapping symptoms and limitations of current imaging methods. This study investigates the use of [11C]PBB3 PET/CT imaging to visualize tau pathology and improve diagnostic accuracy. Given diagnostic challenges with symptoms and conventional imaging, [11C]PBB3 PET/CT's potential to enhance accuracy was investigated by correlating tau pathology with cerebrospinal fluid (CSF) biomarkers, positron emission tomography (PET), computed tomography (CT), amyloid-beta, and Mini-Mental State Examination (MMSE). We conducted [11C]PBB3 PET/CT imaging on 24 patients with suspected AD or FTLD, alongside [11C]PiB PET/CT (13 patients) and [18F]FDG PET/CT (15 patients). Visual and quantitative assessments of [11C]PBB3 uptake using standardized uptake value ratios (SUV-Rs) and correlation analyses with clinical assessments were performed. The scans revealed distinct tau accumulation patterns; 13 patients had no or faint uptake (PBB3-negative) and 11 had moderate to pronounced uptake (PBB3-positive). Significant inverse correlations were found between [11C]PBB3 SUV-Rs and MMSE scores, but not with CSF-tau or CSF-amyloid-beta levels. Here, we show that [11C]PBB3 PET/CT imaging can reveal distinct tau accumulation patterns and correlate these with cognitive impairment in neurodegenerative diseases. Our study demonstrates the potential of [11C]PBB3-PET imaging for visualizing tau pathology and assessing disease severity, offering a promising tool for enhancing diagnostic accuracy in AD and FTLD. Further research is essential to validate these findings and refine the use of tau-specific PET imaging in clinical practice, ultimately improving patient care and treatment outcomes.
Collapse
Affiliation(s)
- Joachim Strobel
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Katharina Deininger
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Karl Peter Bohn
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, Halle University, 06120 Halle, Germany
| | - Christoph Solbach
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Dörte Polivka
- Department of Neurology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Patrick Fissler
- Psychiatric Services Thurgau (Academic Teaching Hospital of the University of Konstanz), 8596 Münsterlingen, Switzerland
| | - Gerhard Glatting
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Matthias W. Riepe
- Department of Psychiatry and Psychotherapy II, Ulm University, 89075 Ulm, Germany
| | - Makoto Higuchi
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ambros J. Beer
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
2
|
Juengling F, Wuest F, Schirrmacher R, Abele J, Thiel A, Soucy JP, Camicioli R, Garibotto V. PET Imaging in Dementia: Mini-Review and Canadian Perspective for Clinical Use. Can J Neurol Sci 2024:1-13. [PMID: 38433571 DOI: 10.1017/cjn.2024.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
PET imaging is increasingly recognized as an important diagnostic tool to investigate patients with cognitive disturbances of possible neurodegenerative origin. PET with 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), assessing glucose metabolism, provides a measure of neurodegeneration and allows a precise differential diagnosis among the most common neurodegenerative diseases, such as Alzheimer's disease, frontotemporal dementia or dementia with Lewy bodies. PET tracers specific for the pathological deposits characteristic of different neurodegenerative processes, namely amyloid and tau deposits typical of Alzheimer's Disease, allow the visualization of these aggregates in vivo. [18F]FDG and amyloid PET imaging have reached a high level of clinical validity and are since 2022 investigations that can be offered to patients in standard clinical care in most of Canada.This article will briefly review and summarize the current knowledge on these diagnostic tools, their integration into diagnostic algorithms as well as perspectives for future developments.
Collapse
Affiliation(s)
- Freimut Juengling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
- Medical Faculty, University of Bern, Bern, Switzerland
| | - Frank Wuest
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
| | - Ralf Schirrmacher
- Division of Oncologic Imaging and Radionuclide Therapy, Cross Cancer Institute, Edmonton, AB, Canada
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton, AB, Canada
| | - Jonathan Abele
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Alexander Thiel
- Department of Neurology and Neurosurgery, Lady Davis Institute for Medical Research, McGill University, Montréal, QC, Canada
| | - Jean-Paul Soucy
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Valentina Garibotto
- Diagnostic Department, Nuclear Medicine and Molecular Imaging Division, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Zimmer L. Recent applications of positron emission tomographic (PET) imaging in psychiatric drug discovery. Expert Opin Drug Discov 2024; 19:161-172. [PMID: 37948046 DOI: 10.1080/17460441.2023.2278635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Psychiatry is one of the medical disciplines that suffers most from a lack of innovation in its therapeutic arsenal. Many failures in drug candidate trials can be explained by pharmacological properties that have been poorly assessed upstream, in terms of brain passage, brain target binding and clinical outcomes. Positron emission tomography can provide pharmacokinetic and pharmacodynamic data to help select candidate-molecules for further clinical trials. AREAS COVERED This review aims to explain and discuss the various methods using positron-emitting radiolabeled molecules to trace the cerebral distribution of the drug-candidate or indirectly measure binding to its therapeutic target. More than an exhaustive review of PET studies in psychopharmacology, this article highlights the contributions this technology can make in drug discovery applied to psychiatry. EXPERT OPINION PET neuroimaging is the only technological approach that can, in vivo in humans, measure cerebral delivery of a drug candidate, percentage and duration of target binding, and even the pharmacological effects. PET studies in a small number of subjects in the early stages of the development of a psychotropic drug can therefore provide the pharmacokinetic/pharmacodynamic data required for subsequent clinical evaluation. While PET technology is demanding in terms of radiochemical, radiopharmacological and nuclear medicine expertise, its integration into the development process of new drugs for psychiatry has great added value.
Collapse
Affiliation(s)
- Luc Zimmer
- Lyon Neuroscience Research Center, Université Claude Bernard, Lyon, France
- CERMEP, Hospices Civils de Lyon, Lyon, France
- Institut National des Sciences et Technologies Nucléaire, Saclay, France
| |
Collapse
|
4
|
Rani N, Alm KH, Corona-Long CA, Speck CL, Soldan A, Pettigrew C, Zhu Y, Albert M, Bakker A. Tau PET burden in Brodmann areas 35 and 36 is associated with individual differences in cognition in non-demented older adults. Front Aging Neurosci 2023; 15:1272946. [PMID: 38161595 PMCID: PMC10757623 DOI: 10.3389/fnagi.2023.1272946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The accumulation of neurofibrillary tau tangles, a neuropathological hallmark of Alzheimer's disease (AD), occurs in medial temporal lobe (MTL) regions early in the disease process, with some of the earliest deposits localized to subregions of the entorhinal cortex. Although functional specialization of entorhinal cortex subregions has been reported, few studies have considered functional associations with localized tau accumulation. Methods In this study, stepwise linear regressions were used to examine the contributions of regional tau burden in specific MTL subregions, as measured by 18F-MK6240 PET, to individual variability in cognition. Dependent measures of interest included the Clinical Dementia Rating Sum of Boxes (CDR-SB), Mini Mental State Examination (MMSE), and composite scores of delayed episodic memory and language. Other model variables included age, sex, education, APOE4 status, and global amyloid burden, indexed by 11C-PiB. Results Tau burden in right Brodmann area 35 (BA35), left and right Brodmann area 36 (BA36), and age each uniquely contributed to the proportion of explained variance in CDR-SB scores, while right BA36 and age were also significant predictors of MMSE scores, and right BA36 was significantly associated with delayed episodic memory performance. Tau burden in both left and right BA36, along with education, uniquely contributed to the proportion of explained variance in language composite scores. Importantly, the addition of more inclusive ROIs, encompassing less granular segmentation of the entorhinal cortex, did not significantly contribute to explained variance in cognition across any of the models. Discussion These findings suggest that the ability to quantify tau burden in more refined MTL subregions may better account for individual differences in cognition, which may improve the identification of non-demented older adults who are on a trajectory of decline due to AD.
Collapse
Affiliation(s)
- Nisha Rani
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kylie H. Alm
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Caitlin A. Corona-Long
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Caroline L. Speck
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yuxin Zhu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Strobel J, Müller HP, Ludolph AC, Beer AJ, Sollmann N, Kassubek J. New Perspectives in Radiological and Radiopharmaceutical Hybrid Imaging in Progressive Supranuclear Palsy: A Systematic Review. Cells 2023; 12:2776. [PMID: 38132096 PMCID: PMC10742083 DOI: 10.3390/cells12242776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by four-repeat tau deposition in various cell types and anatomical regions, and can manifest as several clinical phenotypes, including the most common phenotype, Richardson's syndrome. The limited availability of biomarkers for PSP relates to the overlap of clinical features with other neurodegenerative disorders, but identification of a growing number of biomarkers from imaging is underway. One way to increase the reliability of imaging biomarkers is to combine different modalities for multimodal imaging. This review aimed to provide an overview of the current state of PSP hybrid imaging by combinations of positron emission tomography (PET) and magnetic resonance imaging (MRI). Specifically, combined PET and MRI studies in PSP highlight the potential of [18F]AV-1451 to detect tau, but also the challenge in differentiating PSP from other neurodegenerative diseases. Studies over the last years showed a reduced synaptic density in [11C]UCB-J PET, linked [11C]PK11195 and [18F]AV-1451 markers to disease progression, and suggested the potential role of [18F]RO948 PET for identifying tau pathology in subcortical regions. The integration of quantitative global and regional gray matter analysis by MRI may further guide the assessment of reduced cortical thickness or volume alterations, and diffusion MRI could provide insight into microstructural changes and structural connectivity in PSP. Challenges in radiopharmaceutical biomarkers and hybrid imaging require further research targeting markers for comprehensive PSP diagnosis.
Collapse
Affiliation(s)
- Joachim Strobel
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany;
| | - Hans-Peter Müller
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
| | - Albert C. Ludolph
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
- German Center for Neurodegenerative Diseases (DZNE), Ulm University, 89081 Ulm, Germany
| | - Ambros J. Beer
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany;
| | - Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jan Kassubek
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
- German Center for Neurodegenerative Diseases (DZNE), Ulm University, 89081 Ulm, Germany
| |
Collapse
|
6
|
Dave BP, Shah YB, Maheshwari KG, Mansuri KA, Prajapati BS, Postwala HI, Chorawala MR. Pathophysiological Aspects and Therapeutic Armamentarium of Alzheimer's Disease: Recent Trends and Future Development. Cell Mol Neurobiol 2023; 43:3847-3884. [PMID: 37725199 DOI: 10.1007/s10571-023-01408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Alzheimer's disease (AD) is the primary cause of dementia and is characterized by the death of brain cells due to the accumulation of insoluble amyloid plaques, hyperphosphorylation of tau protein, and the formation of neurofibrillary tangles within the cells. AD is also associated with other pathologies such as neuroinflammation, dysfunction of synaptic connections and circuits, disorders in mitochondrial function and energy production, epigenetic changes, and abnormalities in the vascular system. Despite extensive research conducted over the last hundred years, little is established about what causes AD or how to effectively treat it. Given the severity of the disease and the increasing number of affected individuals, there is a critical need to discover effective medications for AD. The US Food and Drug Administration (FDA) has approved several new drug molecules for AD management since 2003, but these drugs only provide temporary relief of symptoms and do not address the underlying causes of the disease. Currently, available medications focus on correcting the neurotransmitter disruption observed in AD, including cholinesterase inhibitors and an antagonist of the N-methyl-D-aspartate (NMDA) receptor, which temporarily alleviates the signs of dementia but does not prevent or reverse the course of AD. Research towards disease-modifying AD treatments is currently underway, including gene therapy, lipid nanoparticles, and dendrimer-based therapy. These innovative approaches aim to target the underlying pathological processes of AD rather than just managing the symptoms. This review discusses the novel aspects of pathogenesis involved in the causation of AD of AD and in recent developments in the therapeutic armamentarium for the treatment of AD such as gene therapy, lipid nanoparticles, and dendrimer-based therapy, and many more.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Yesha B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Kaif A Mansuri
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Bhadrawati S Prajapati
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Humzah I Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
7
|
Tao P, Xu W, Gu S, Shi H, Wang Q, Xu Y. Traditional Chinese medicine promotes the control and treatment of dementia. Front Pharmacol 2022; 13:1015966. [PMID: 36304171 PMCID: PMC9592982 DOI: 10.3389/fphar.2022.1015966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Dementia is a syndrome that impairs learning and memory. To date, there is no effective therapy for dementia. Current prescription drugs, such as cholinesterase inhibitors, fail to improve the condition of dementia and are often accompanied by severe adverse effects. In recent years, the number of studies into the use of traditional Chinese medicine (TCM) for dementia treatment has increased, revealing a formula that could significantly improve memory and cognitive dysfunctions in animal models. TCM showed fewer adverse effects, lower costs, and improved suitability for long-term use compared with currently prescribed drugs. Due to the complexity of ingredients and variations in bioactivity of herbal medicines, the multi-target nature of the traditional Chinese formula affected the outcome of dementia therapy. Innovations in TCM will create a platform for the development of new drugs for the prevention and treatment of dementia, further strengthening and enhancing the current influence of TCM.
Collapse
Affiliation(s)
- Pengyu Tao
- Department of Nephrology Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxin Xu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Haiyan Shi
- Department of Social Health Management, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital, Qingdao University, Qingdao, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
8
|
Wang R, Gao H, Xie H, Jia Z, Chen Q. Molecular imaging biomarkers in familial frontotemporal lobar degeneration: Progress and prospects. Front Neurol 2022; 13:933217. [PMID: 36051222 PMCID: PMC9424494 DOI: 10.3389/fneur.2022.933217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Familial frontotemporal lobar degeneration (FTLD) is a pathologically heterogeneous group of neurodegenerative diseases with diverse genotypes and clinical phenotypes. Three major mutations were reported in patients with familial FTLD, namely, progranulin (GRN), microtubule-associated protein tau (MAPT), and the chromosome 9 open reading frame 72 (C9orf72) repeat expansion, which could cause neurodegenerative pathological changes years before symptom onset. Noninvasive quantitative molecular imaging with PET or single-photon emission CT (SPECT) allows for selective visualization of the molecular targets in vivo to investigate brain metabolism, perfusion, neuroinflammation, and pathophysiological changes. There was increasing evidence that several molecular imaging biomarkers tend to serve as biomarkers to reveal the early brain abnormalities in familial FTLD. Tau-PET with 18F-flortaucipir and 11C-PBB3 demonstrated the elevated tau position in patients with FTLD and also showed the ability to differentiate patterns among the different subtypes of the mutations in familial FTLD. Furthermore, dopamine transporter imaging with the 11C-DOPA and 11C-CFT in PET and the 123I-FP-CIT in SPECT revealed the loss of dopaminergic neurons in the asymptomatic and symptomatic patients of familial FTLD. In addition, PET imaging with the 11C-MP4A has demonstrated reduced acetylcholinesterase (AChE) activity in patients with FTLD, while PET with the 11C-DAA1106 and 11C-PK11195 revealed an increased level of microglial activation associated with neuroinflammation even before the onset of symptoms in familial FTLD. 18F-fluorodeoxyglucose (FDG)-PET indicated hypometabolism in FTLD with different mutations preceded the atrophy on MRI. Identifying molecular imaging biomarkers for familial FTLD is important for the in-vivo assessment of underlying pathophysiological changes with disease progression and future disease-modifying therapy. We review the recent progress of molecular imaging in familial FTLD with focused on the possible implication of these techniques and their prospects in specific mutation types.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Gao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Qin Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Qin Chen
| |
Collapse
|
9
|
Lozupone M, Berardino G, Mollica A, Sardone R, Dibello V, Zupo R, Lampignano L, Castellana F, Bortone I, Stallone R, Daniele A, Altamura M, Bellomo A, Solfrizzi V, Panza F. ALZT-OP1: An experimental combination regimen for the treatment of Alzheimer's Disease. Expert Opin Investig Drugs 2022; 31:759-771. [PMID: 35758153 DOI: 10.1080/13543784.2022.2095261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION For Alzheimer's disease (AD) treatment, US FDA granted accelerated approval for aducanumab due to its amyloid-β (Aβ)-lowering effects, notwithstanding the reported poor correlation between amyloid plaque reduction and clinical change for this drug. The diversification of drug targets appears to be the future of the AD field and from this perspective, drugs modulating microglia dysfunction and combination treatment regimens offer some promise. AREAS COVERED The aim of the present article was to provide a comprehensive review of ALZT-OP1 (cromolyn sodium plus ibuprofen), an experimental combination treatment regimen for AD, discussing their mechanisms of action targeting Aβ and neuroinflammation, examining the role of microglia in AD and offering our own insights on the role of present and alternative approaches directed toward neuroinflammation. EXPERT OPINION Enrolling high-risk participants with elevated brain amyloid could help to slow cognitive decline in secondary prevention trials during AD preclinical stages. Long-term follow-up indicated that non-steroidal anti-inflammatory drugs use begun when the brain was still normal may benefit these patients, suggesting that the timing of therapy could be crucial. However, previous clinical failures and the present incomplete understanding of the Aβ pathophysiological role in AD put this novel experimental combination regimen at substantial risk of failure.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Berardino
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia
| | - Anita Mollica
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia
| | - Rodolfo Sardone
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| | - Vittorio Dibello
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roberta Zupo
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| | - Luisa Lampignano
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| | - Fabio Castellana
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| | - Ilaria Bortone
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| | - Roberta Stallone
- Neuroscience and Education, Human Resources Excellence in Research, University of Foggia, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy.,Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Mario Altamura
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology and Research Hospital IRCCS "S. De Bellis" Castellana Grotte, Bari, Italy
| |
Collapse
|
10
|
Tanaka M, Vécsei L. Editorial of Special Issue ‘Dissecting Neurological and Neuropsychiatric Diseases: Neurodegeneration and Neuroprotection’. Int J Mol Sci 2022; 23:ijms23136991. [PMID: 35805990 PMCID: PMC9266548 DOI: 10.3390/ijms23136991] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
11
|
Pomilio AB, Vitale AA, Lazarowski AJ. Neuroproteomics Chip-Based Mass Spectrometry and Other Techniques for Alzheimer´S Disease Biomarkers – Update. Curr Pharm Des 2022; 28:1124-1151. [DOI: 10.2174/1381612828666220413094918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer's disease (AD) is a progressive neurodegenerative disease of growing interest given that there is cognitive damage and symptom onset acceleration. Therefore, it is important to find AD biomarkers for early diagnosis, disease progression, and discrimination of AD and other diseases.
Objective:
To update the relevance of mass spectrometry for the identification of peptides and proteins involved in AD useful as discriminating biomarkers.
Methods:
Proteomics and peptidomics technologies that show the highest possible specificity and selectivity for AD biomarkers are analyzed, together with the biological fluids used. In addition to positron emission tomography and magnetic resonance imaging, MALDI-TOF mass spectrometry is widely used to identify proteins and peptides involved in AD. The use of protein chips in SELDI technology and electroblotting chips for peptides makes feasible small amounts (L) of samples for analysis.
Results:
Suitable biomarkers are related to AD pathology, such as intracellular neurofibrillary tangles; extraneuronal senile plaques; neuronal and axonal degeneration; inflammation and oxidative stress. Recently, peptides were added to the candidate list, which are not amyloid-b or tau fragments, but are related to coagulation, brain plasticity, and complement/neuroinflammation systems involving the neurovascular unit.
Conclusion:
The progress made in the application of mass spectrometry and recent chip techniques is promising for discriminating between AD, mild cognitive impairment, and matched healthy controls. The application of this technique to blood samples from patients with AD has shown to be less invasive and fast enough to determine the diagnosis, stage of the disease, prognosis, and follow-up of the therapeutic response.
Collapse
Affiliation(s)
- Alicia B. Pomilio
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Arturo A. Vitale
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Alberto J. Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Córdoba 2351, C1120AAF Buenos Aires, Argentina
| |
Collapse
|
12
|
The Role of Hub and Spoke Regions in Theory of Mind in Early Alzheimer's Disease and Frontotemporal Dementia. Biomedicines 2022; 10:biomedicines10030544. [PMID: 35327346 PMCID: PMC8945345 DOI: 10.3390/biomedicines10030544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 02/01/2023] Open
Abstract
Theory of mind (ToM, the ability to attribute mental states to others) deficit is a frequent finding in neurodegenerative conditions, mediated by a diffuse brain network confirmed by 18F-FDG-PET and MR imaging, involving frontal, temporal and parietal areas. However, the role of hubs and spokes network regions in ToM performance, and their respective damage, is still unclear. To study this mechanism, we combined ToM testing with brain 18F-FDG-PET imaging in 25 subjects with mild cognitive impairment due to Alzheimer’s disease (MCI−AD), 24 subjects with the behavioral variant of frontotemporal dementia (bvFTD) and 40 controls. Regions included in the ToM network were divided into hubs and spokes based on their structural connectivity and distribution of hypometabolism. The hubs of the ToM network were identified in frontal regions in both bvFTD and MCI−AD patients. A mediation analysis revealed that the impact of spokes damage on ToM performance was mediated by the integrity of hubs (p < 0.001), while the impact of hubs damage on ToM performance was independent from the integrity of spokes (p < 0.001). Our findings support the theory that a key role is played by the hubs in ToM deficits, suggesting that hubs could represent a final common pathway leading from the damage of spoke regions to clinical deficits.
Collapse
|