1
|
Kim HE, Na YG, Jin M, Song B, Yun TS, Hwang YR, Park JS, Lee JY, Baek JS, Han SC, Lee HK, Cho CW. Fabrication and evaluation of chitosan-coated nanostructured lipid carriers for co-delivery of paclitaxel and PD-L1 siRNA. Int J Pharm 2024; 666:124835. [PMID: 39406303 DOI: 10.1016/j.ijpharm.2024.124835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
This study aimed to develop a nanostructured lipid carrier (NLC) capable of co-delivering paclitaxel (PTX) and programmed death-ligand 1 (PD-L1) small interfering RNA (siRNA) to enhance PTX bioavailability and bolster immunity through PD-L1 knockdown. We prepared a PTX-loaded NLC (P-NLC) and coated it with positively charged chitosan (Chi) to create P-NLC-Chi, which was subsequently conjugated to siRNA (P-NLC-Chi-siRNA). The P-NLC-Chi formulation was optimized using the Box-Behnken design. P-NLC-Chi measured 123.8 ± 0.52 nm (zeta potential, 22.71 ± 0.49 mV). By verifying the gel retardation assay and observing changes in the zeta potential, the optimal binding ratio of NLC to PD-L1 siRNA was identified as 50:1. The P-NLC-Chi-siRNA particle size was 181.97 ± 0.67 nm, with a zeta potential of 18.66 ± 0.23 mV. siRNA stability was observed in serum over a 24-h period. Enhanced cytotoxicity and intracellular uptake of the complex were evident in breast cancer cells and breast cancer-resistant cells (MCF-7 and MCF-7/ADR cells, respectively). Evaluation of P-glycoprotein-mediated efflux demonstrated that NLC mitigated drug efflux in MCF-7/ADR cells. Subcutaneous injection of P-NLC-Chi-siRNA into tumor-bearing BALB/c nude mice injected with MCF-7/ADR cells revealed a reduction in tumor size. In vitro and in vivo experiments indicated a significant reduction in PD-L1 mRNA expression levels. Additionally, an in vivo study revealed tumor-specific CD4 + and CD8 + T cell responses within the tumor tissue following the injection of P-NLC-Chi-siRNA. Our findings suggest that Chi-coated NLC for the co-delivery of PTX and PD-L1 siRNA has great potential as an innovative delivery system for chemoimmunotherapy.
Collapse
Affiliation(s)
- Ha-Eun Kim
- College of Pharmacy and Institute of Drug Research & Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Young-Guk Na
- College of Pharmacy and Institute of Drug Research & Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Minki Jin
- College of Pharmacy and Institute of Drug Research & Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Bomin Song
- College of Pharmacy and Institute of Drug Research & Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Taek-Seon Yun
- College of Pharmacy and Institute of Drug Research & Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Yu-Rim Hwang
- College of Pharmacy and Institute of Drug Research & Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jeong-Sook Park
- College of Pharmacy and Institute of Drug Research & Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Herbal Medicine Resource, Kangwon National University, 346 Hwangjo-gil, Dogye-eup, Samcheok-si 25949, Gangwon-do, Republic of Korea
| | - Su-Cheol Han
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Institute of Toxicology (KIT), Jeollabuk‑do, Jeongeup 53212, Republic of Korea
| | - Hong-Ki Lee
- College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea.
| | - Cheong-Weon Cho
- College of Pharmacy and Institute of Drug Research & Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
2
|
Bal T, Anjrini N, Zeroual M. Recent Advances and Challenges in Targeted Drug Delivery Using Biofunctional Coatings. MEDICAL APPLICATIONS FOR BIOCOMPATIBLE SURFACES AND COATINGS 2024:41-75. [DOI: 10.1039/9781837675555-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Globally, clinics are overwhelmed by drugs targeting undesired cells and organs, causing adverse systemic effects on the body. This shortfall in targeting specificity, safety, and efficiency has noticeably contributed to the failure of the bench-to-bedside transition. Activation or impairment of immune activity due to a misdirected drug and its carrier fuels complications, extending the range of destruction which can convert the course of disease into a life-threatening route. To address these great challenges, advanced coatings as indispensable components of future medicine have been investigated over the last few decades for precisely targeted drug delivery to achieve favorable prognoses in the treatment of a broad spectrum of diseases. Complemented by advancements in the pharmacological parameters, these systems hold great promise for the field. This chapter aims to discuss recent progress on new coatings for targeted drug delivery and the parameters for manufacturing these platforms for their cargo based on major determinants such as biocompatibility and bioactivity. A brief overview of the various applications of targeted drug delivery with functional coatings is also provided to offer a new perspective on the field.
Collapse
Affiliation(s)
- Tugba Bal
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
- bDepartment of Bioengineering, Faculty of Engineering and Natural Sciences, Uskudar University, 34662, Istanbul, Turkiye
| | - Nasma Anjrini
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
| | - Meryem Zeroual
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
| |
Collapse
|
3
|
Scialabba C, Marretta L, D'Anna L, Barone G, Cavallaro G, Terenzi A, Mauro N. Synergistic Anticancer Effects by Enhancing the G-Quadruplex Binding of Nickel(II) Salphen Complexes through Coupling with S-Doped Carbon Nanodots. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56777-56788. [PMID: 39380145 DOI: 10.1021/acsami.4c12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In recent decades, researchers have focused on developing less toxic and more precise cancer therapies. Carbon nanodots (CDs) are among the most promising technologies due to their high biocompatibility, tunable fluorescence, and ability to facilitate photothermal and photodynamic therapy. This study explores the synthesis and characterization of two CDs conjugated with Salphen metal complexes, namely, CDs-PEG-M1 and CDs-PEG-M2, through Sonogashira coupling. Their interaction with G-quadruplex DNA structures (G4s), motifs largely involved in cancer development, was evaluated using various spectroscopic techniques. The results indicate that CDs-PEG-M1 exhibits greater effectiveness in stabilizing G4 structures compared to the metal complex alone or nonfunctionalized CDs. This enhanced stabilization suggests that CDs-PEG-M1 could reduce the concentration of the metal complex needed for potential antitumor applications, thereby minimizing side effects on nontarget tissues. When tested on breast cancer models (MDA-MB-231 as a triple-negative model and MCF-7 as a HER-2 positive model) and on a healthy cell line (HDFa), the CDs-PEG-M1 conjugate reduced cell viability in a concentration- and time-dependent manner, showing greater potency and selectivity against cancer cells compared to virgin CDs and the free M1 complex. This synergistic anticancer effect, driven by the interaction with G4 structures and reactive oxygen species production, underscores the potential of CDs-PEG-M1 as a targeted nanotheranostic tool.
Collapse
Affiliation(s)
| | - Laura Marretta
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123, Palermo Italy
| | - Luisa D'Anna
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123, Palermo Italy
| | - Giampaolo Barone
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123, Palermo Italy
| | | | - Alessio Terenzi
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, Via Archirafi, 32 90123, Palermo Italy
| | | |
Collapse
|
4
|
Choi K. The Role of Macrophages in Airway Disease Focusing on Porcine Reproductive and Respiratory Syndrome Virus and the Treatment with Antioxidant Nanoparticles. Viruses 2024; 16:1563. [PMID: 39459897 PMCID: PMC11512392 DOI: 10.3390/v16101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Lung macrophage cells play a critical role in various lung diseases, and their state can change depending on the progression of the disease by inducing either an inflammatory or anti-inflammatory state. In this review, the potential therapeutic effects of treatment with antioxidant nanoparticles in air-borne diseases focusing on porcine reproductive and respiratory virus (PRRSV), considering reactive oxygen species (ROS) as one of the factors that regulate M1 and M2 macrophages in the inflammatory and anti-inflammatory states, respectively, was described. In addition, the author examines the status of protein structure research on CD163 (one of the markers of anti-inflammatory M2 macrophages) in human and veterinary lung diseases.
Collapse
MESH Headings
- Animals
- Porcine respiratory and reproductive syndrome virus/immunology
- Porcine respiratory and reproductive syndrome virus/physiology
- Antioxidants/pharmacology
- Swine
- Nanoparticles/chemistry
- Porcine Reproductive and Respiratory Syndrome/immunology
- Porcine Reproductive and Respiratory Syndrome/virology
- Porcine Reproductive and Respiratory Syndrome/drug therapy
- Humans
- Reactive Oxygen Species/metabolism
- Macrophages/immunology
- Macrophages/virology
- Macrophages/drug effects
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Macrophages, Alveolar/virology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/drug effects
- Receptors, Cell Surface/metabolism
- Antigens, CD/metabolism
- Antigens, CD/immunology
Collapse
Affiliation(s)
- Kyuhyung Choi
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
- Bundang New York Animal Hospital, Seongnam 13637, Republic of Korea
| |
Collapse
|
5
|
Hoshi R, Gorospe KA, Labouta HI, Azad T, Lee WL, Thu KL. Alternative Strategies for Delivering Immunotherapeutics Targeting the PD-1/PD-L1 Immune Checkpoint in Cancer. Pharmaceutics 2024; 16:1181. [PMID: 39339217 PMCID: PMC11434872 DOI: 10.3390/pharmaceutics16091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
The programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint constitutes an inhibitory pathway best known for its regulation of cluster of differentiation 8 (CD8)+ T cell-mediated immune responses. Engagement of PD-L1 with PD-1 expressed on CD8+ T cells activates downstream signaling pathways that culminate in T cell exhaustion and/or apoptosis. Physiologically, these immunosuppressive effects exist to prevent autoimmunity, but cancer cells exploit this pathway by overexpressing PD-L1 to facilitate immune escape. Intravenously (IV) administered immune checkpoint inhibitors (ICIs) that block the interaction between PD-1/PD-L1 have achieved great success in reversing T cell exhaustion and promoting tumor regression in various malignancies. However, these ICIs can cause immune-related adverse events (irAEs) due to off-tumor toxicities which limits their therapeutic potential. Therefore, considerable effort has been channeled into exploring alternative delivery strategies that enhance tumor-directed delivery of PD-1/PD-L1 ICIs and reduce irAEs. Here, we briefly describe PD-1/PD-L1-targeted cancer immunotherapy and associated irAEs. We then provide a detailed review of alternative delivery approaches, including locoregional (LDD)-, oncolytic virus (OV)-, nanoparticle (NP)-, and ultrasound and microbubble (USMB)-mediated delivery that are currently under investigation for enhancing tumor-specific delivery to minimize toxic off-tumor effects. We conclude with a commentary on key challenges associated with these delivery methods and potential strategies to mitigate them.
Collapse
Affiliation(s)
- Ryunosuke Hoshi
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Kristyna A. Gorospe
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Hagar I. Labouta
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Leslie Dan Faculty of Pharmacy, University of Toronto, St. George Campus, Toronto, ON M5S 3M2, Canada
- Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, St. George Campus, Toronto, ON M5S 3E2, Canada
| | - Taha Azad
- Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Health Campus, Sherbrooke, QC J1K 2R1, Canada;
- Research Center, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1J 3H5, Canada
| | - Warren L. Lee
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Biochemistry, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada
- Medicine and the Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| |
Collapse
|
6
|
Zimmer O, Goepferich A. On the uncertainty of the correlation between nanoparticle avidity and biodistribution. Eur J Pharm Biopharm 2024; 198:114240. [PMID: 38437906 DOI: 10.1016/j.ejpb.2024.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
The specific delivery of a drug to its site of action also known as targeted drug delivery is a topic in the field of pharmaceutics studied for decades. One approach extensively investigated in this context is the use ligand functionalized nanoparticles. These particles are modified to carry receptor specific ligands, enabling them to accumulate at a desired target site. However, while this concept initially appears straightforward to implement, in-depth research has revealed several challenges hindering target site specific particle accumulation - some of which remain unresolved to this day. One of these challenges consists in the still incomplete understanding of how nanoparticles interact with biological systems. This knowledge gap significantly compromises the predictability of particle distribution in biological systems, which is critical for therapeutic efficacy. One of the most crucial steps in delivery is the attachment of nanoparticles to cells at the target site. This attachment occurs via the formation of multiple ligand receptor bonds. A process also referred to as multivalent interaction. While multivalency has been described extensively for individual molecules and macromolecules respectively, little is known on the multivalent binding of nanoparticles to cells. Here, we will specifically introduce the concept of avidity as a measure for favorable particle membrane interactions. Also, an overview about nanoparticle and membrane properties affecting avidity will be given. Thereafter, we provide a thorough review on literature investigating the correlation between nanoparticle avidity and success in targeted particle delivery. In particular, we want to analyze the currently uncertain data on the existence and nature of the correlation between particle avidity and biodistribution.
Collapse
Affiliation(s)
- Oliver Zimmer
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany.
| |
Collapse
|
7
|
Marques AC, Costa PC, Velho S, Amaral MH. Analytical Techniques for Characterizing Tumor-Targeted Antibody-Functionalized Nanoparticles. Life (Basel) 2024; 14:489. [PMID: 38672759 PMCID: PMC11051252 DOI: 10.3390/life14040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The specific interaction between cell surface receptors and corresponding antibodies has driven opportunities for developing targeted cancer therapies using nanoparticle systems. It is challenging to design and develop such targeted nanomedicines using antibody ligands, as the final nanoconjugate's specificity hinges on the cohesive functioning of its components. The multicomponent nature of antibody-conjugated nanoparticles also complicates the characterization process. Regardless of the type of nanoparticle, it is essential to perform physicochemical characterization to establish a solid foundation of knowledge and develop suitable preclinical studies. A meaningful physicochemical evaluation of antibody-conjugated nanoparticles should include determining the quantity and orientation of the antibodies, confirming the antibodies' integrity following attachment, and assessing the immunoreactivity of the obtained nanoconjugates. In this review, the authors describe the various techniques (electrophoresis, spectroscopy, colorimetric assays, immunoassays, etc.) used to analyze the physicochemical properties of nanoparticles functionalized with antibodies and discuss the main results.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Yu Z, Huang L, Guo J. Anti-stromal nanotherapeutics for hepatocellular carcinoma. J Control Release 2024; 367:500-514. [PMID: 38278367 DOI: 10.1016/j.jconrel.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Hepatocellular carcinoma (HCC), the most commonly diagnosed primary liver cancer, has become a leading cause of cancer-related death worldwide. Accumulating evidence confirms that the stromal constituents within the tumor microenvironment (TME) exacerbate HCC malignancy and set the barriers to current anti-HCC treatments. Recent developments of nano drug delivery system (NDDS) have facilitated the application of stroma-targeting therapeutics, disrupting the stromal TME in HCC. This review discusses the stromal activities in HCC development and therapy resistance. In addition, it addresses the delivery challenges of NDDS for stroma-targeting therapeutics (termed anti-stromal nanotherapeutics in this review), and provides recent advances in anti-stromal nanotherapeutics for safe, effective, and specific HCC therapy.
Collapse
Affiliation(s)
- Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
9
|
Kouri MA, Spyratou E, Kalkou ME, Patatoukas G, Angelopoulou E, Tremi I, Havaki S, Gorgoulis VG, Kouloulias V, Platoni K, Efstathopoulos EP. Nanoparticle-Mediated Radiotherapy: Unraveling Dose Enhancement and Apoptotic Responses in Cancer and Normal Cell Lines. Biomolecules 2023; 13:1720. [PMID: 38136591 PMCID: PMC10742116 DOI: 10.3390/biom13121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Cervical cancer remains a pressing global health concern, necessitating advanced therapeutic strategies. Radiotherapy, a fundamental treatment modality, has faced challenges such as targeted dose deposition and radiation exposure to healthy tissues, limiting optimal outcomes. To address these hurdles, nanomaterials, specifically gold nanoparticles (AuNPs), have emerged as a promising avenue. This study delves into the realm of cervical cancer radiotherapy through the meticulous exploration of AuNPs' impact. Utilizing ex vivo experiments involving cell lines, this research dissected intricate radiobiological interactions. Detailed scrutiny of cell survival curves, dose enhancement factors (DEFs), and apoptosis in both cancer and normal cervical cells revealed profound insights. The outcomes showcased the substantial enhancement of radiation responses in cancer cells following AuNP treatment, resulting in heightened cell death and apoptotic levels. Significantly, the most pronounced effects were observed 24 h post-irradiation, emphasizing the pivotal role of timing in AuNPs' efficacy. Importantly, AuNPs exhibited targeted precision, selectively impacting cancer cells while preserving normal cells. This study illuminates the potential of AuNPs as potent radiosensitizers in cervical cancer therapy, offering a tailored and efficient approach. Through meticulous ex vivo experimentation, this research expands our comprehension of the complex dynamics between AuNPs and cells, laying the foundation for their optimized clinical utilization.
Collapse
Affiliation(s)
- Maria Anthi Kouri
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
- Medical Physics Program, Department of Physics and Applied Physics, Kennedy College of Sciences, University of Massachusetts Lowell, 265 Riverside St., Lowell, MA 01854, USA
| | - Ellas Spyratou
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens, Greece
| | - Maria-Eleni Kalkou
- Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Georgios Patatoukas
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| | - Evangelia Angelopoulou
- 2nd Department of Pathology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Ioanna Tremi
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.T.); (S.H.); (V.G.G.)
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.T.); (S.H.); (V.G.G.)
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.T.); (S.H.); (V.G.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Vassilis Kouloulias
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| | - Kalliopi Platoni
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| | - Efstathios P. Efstathopoulos
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.A.K.); (E.S.); (G.P.); (V.K.); (K.P.)
| |
Collapse
|
10
|
Tavares MR, Islam R, Šubr V, Hackbarth S, Gao S, Yang K, Lobaz V, Fang J, Etrych T. Polymer theranostics with multiple stimuli-based activation of photodynamic therapy and tumor imaging. Theranostics 2023; 13:4952-4973. [PMID: 37771769 PMCID: PMC10526675 DOI: 10.7150/thno.86211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/08/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Efficient theranostic strategies concurrently bring and use both the therapeutic and diagnostic features, serving as a cutting-edge tool to combat advanced cancers. Goals of the Investigation: Here, we develop stimuli-sensitive theranostics consisting of tailored copolymers forming micellar conjugates carrying pyropheophorbide-a (PyF) attached by pH-sensitive hydrazone bonds, thus enabling the tumor microenvironment-sensitive activation of the photodynamic therapy (PDT) effect, fluorescence or phosphorescence. Results: The nanomedicines show superior anti-tumor PDT efficacy and huge tumor-imaging potential, while reducing their accumulation, and potentially side effects, in the liver and spleen. The developed theranostics exhibit clear selective tumor accumulation at high levels in the mouse sarcoma S180 tumor model with almost no PyF found in the healthy tissues after 48 h. Once in the tumor, illumination at λexc = 420 nm reaches the therapeutic effect due to the 1O2 generation. Indeed, an almost complete inhibition of tumor growth is observed up to 18 days after the treatment. Conclusion: The clear benefit of the specific PyF release and activation in the acidic tumor environment for the targeted delivery and tissue distribution dynamics was proved. Conjugates carrying pyropheophorbide-a (PyF) attached by pH-sensitive hydrazone bonds showed their excellent antitumor PDT effect and its applicability as advanced theranostics at very low dose of PyF.
Collapse
Affiliation(s)
- Marina Rodrigues Tavares
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic
| | - Rayhanul Islam
- Laboratory of Microbiology and Oncology, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Vladimír Šubr
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic
| | - Steffen Hackbarth
- Institute of Physics, Photobiophysics, Humboldt University of Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Shanghui Gao
- Laboratory of Microbiology and Oncology, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Kai Yang
- Laboratory of Microbiology and Oncology, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic
| | - Jun Fang
- Laboratory of Microbiology and Oncology, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16200 Prague, Czech Republic
| |
Collapse
|
11
|
Guo J, Zou Y, Huang L. Nano Delivery of Chemotherapeutic ICD Inducers for Tumor Immunotherapy. SMALL METHODS 2023; 7:e2201307. [PMID: 36604976 DOI: 10.1002/smtd.202201307] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Indexed: 05/17/2023]
Abstract
Immunogenic cell death (ICD, also known as immunogenic apoptosis) of malignant cells is confirmed to activate the host immune system to prevent, control, and eliminate tumors. Recently, a range of chemotherapeutic drugs have been repurposed as ICD inducers and applied for tumor immunotherapy. However, several hurdles to the widespread application of chemotherapeutic ICD inducers remain, namely poor water solubility, short blood circulation, non-specific tissue distribution, and severe toxicity. Recent advances in nanotechnology and pharmaceutical formulation foster the development of nano drug delivery systems to tackle the aforementioned hurdles and expedite safe, effective, and specific delivery. This review will describe delivery barriers to chemical ICD inducers and highlight recent nanoformulations for these drugs in tumor immunotherapy.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
12
|
Targeted Two-Step Delivery of Oncotheranostic Nano-PLGA for HER2-Positive Tumor Imaging and Therapy In Vivo: Improved Effectiveness Compared to One-Step Strategy. Pharmaceutics 2023; 15:pharmaceutics15030833. [PMID: 36986694 PMCID: PMC10053351 DOI: 10.3390/pharmaceutics15030833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Therapy for aggressive metastatic breast cancer remains a great challenge for modern biomedicine. Biocompatible polymer nanoparticles have been successfully used in clinic and are seen as a potential solution. Specifically, researchers are exploring the development of chemotherapeutic nanoagents targeting the membrane-associated receptors of cancer cells, such as HER2. However, there are no targeting nanomedications that have been approved for human cancer therapy. Novel strategies are being developed to alter the architecture of agents and optimize their systemic administration. Here, we describe a combination of these approaches, namely, the design of a targeted polymer nanocarrier and a method for its systemic delivery to the tumor site. Namely, PLGA nanocapsules loaded with a diagnostic dye, Nile Blue, and a chemotherapeutic compound, doxorubicin, are used for two-step targeted delivery using the concept of tumor pre-targeting through the barnase/barstar protein “bacterial superglue”. The first pre-targeting component consists of an anti-HER2 scaffold protein, DARPin9_29 fused with barstar, Bs-DARPin9_29, and the second component comprises chemotherapeutic PLGA nanocapsules conjugated to barnase, PLGA-Bn. The efficacy of this system was evaluated in vivo. To this aim, we developed an immunocompetent BALB/c mouse tumor model with a stable expression of human HER2 oncomarkers to test the potential of two-step delivery of oncotheranostic nano-PLGA. In vitro and ex vivo studies confirmed HER2 receptor stable expression in the tumor, making it a feasible tool for HER2-targeted drug evaluation. We demonstrated that two-step delivery was more effective than one-step delivery for both imaging and tumor therapy: two-step delivery had higher imaging capabilities than one-step and a tumor growth inhibition of 94.9% in comparison to 68.4% for the one-step strategy. The barnase*barstar protein pair has been proven to possess excellent biocompatibility, as evidenced by the successful completion of biosafety tests assessing immunogenicity and hemotoxicity. This renders the protein pair a highly versatile tool for pre-targeting tumors with various molecular profiles, thereby enabling the development of personalized medicine.
Collapse
|
13
|
Hyaluronic Acid-Coated Chitosan Nanoparticles as an Active Targeted Carrier of Alpha Mangostin for Breast Cancer Cells. Polymers (Basel) 2023; 15:polym15041025. [PMID: 36850308 PMCID: PMC9965946 DOI: 10.3390/polym15041025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Alpha mangostin (AM) has potential anticancer properties for breast cancer. This study aims to assess the potential of chitosan nanoparticles coated with hyaluronic acid for the targeted delivery of AM (AM-CS/HA) against MCF-7 breast cancer cells. AM-CS/HA showed a spherical shape with an average diameter of 304 nm, a polydispersity index of 0.3, and a negative charge of 24.43 mV. High encapsulation efficiency (90%) and drug loading (8.5%) were achieved. AM released from AM-CS/HA at an acidic pH of 5.5 was higher than the physiological pH of 7.4 and showed sustained release. The cytotoxic effect of AM-CS/HA (IC50 4.37 µg/mL) on MCF-7 was significantly higher than AM nanoparticles without HA coating (AM-CS) (IC50 4.48 µg/mL) and AM (IC50 5.27 µg/mL). These findings suggest that AM-CS/HA enhances AM cytotoxicity and has potential applications for breast cancer therapy.
Collapse
|
14
|
Famta P, Shah S, Jain N, Srinivasarao DA, Murthy A, Ahmed T, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. Albumin-hitchhiking: Fostering the pharmacokinetics and anticancer therapeutics. J Control Release 2023; 353:166-185. [PMID: 36423870 DOI: 10.1016/j.jconrel.2022.11.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Nanotherapeutics demonstrate poor accumulation in the tumor microenvironment due to poor extravasation and penetration into the tumor. Therapeutics such as oligonucleotides, peptides and other biologicals suffer from low systemic half-life and rapid degradation. Albumin-hitchhiking has emerged as an effective strategy to enhance tumor-specific accumulation of various therapeutics. Hitchhiking on serum albumin (SA) have shown to improve biological half-life of various therapeutics including nanocarriers (NCs), biologics, oligonucleotides, vaccines, etc. In addition, passive and active accumulation of SA-riding therapeutics in the tumor, site-specific drug release, and SA-mediated endosomal escape have improved the potential of various anticancer modalities such as chemo-, immune-, vaccine, and gene therapies. In this review, we have discussed the advantages of employing SA-hitchhiking in anticancer therapies. In addition, vaccine strategies employing inherent lymph-nodes accumulating property of albumin have been discussed. We have presented a clinical overview of SA-hitchhiked formulations along with possible bottlenecks for improved clinical outcomes. We have also discussed the role of physiologically based pharmacokinetics (PBPK) modelling for efficient characterization of anti-cancer nanotherapeutics.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Aditya Murthy
- Department of Biopharmaceutics and Bioequivalence, Dr. Reddy's Laboratories Ltd., Global Clinical Management Group, IPDO, Hyderabad, India
| | - Tausif Ahmed
- Department of Biopharmaceutics and Bioequivalence, Dr. Reddy's Laboratories Ltd., Global Clinical Management Group, IPDO, Hyderabad, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
15
|
Jiang M, Qin B, Li X, Liu Y, Guan G, You J. New advances in pharmaceutical strategies for sensitizing anti-PD-1 immunotherapy and clinical research. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1837. [PMID: 35929522 DOI: 10.1002/wnan.1837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 01/31/2023]
Abstract
Attempts have been made continuously to use nano-drug delivery system (NDDS) to improve the effect of antitumor therapy. In recent years, especially in the application of immunotherapy represented by antiprogrammed death receptor 1 (anti-PD-1), it has been vigorously developed. Nanodelivery systems are significantly superior in a number of aspects including increasing the solubility of insoluble drugs, enhancing their targeting ability, prolonging their half-life, and reducing side effects. It can not only directly improve the efficacy of anti-PD-1 immunotherapy, but also indirectly enhance the antineoplastic efficacy of immunotherapy by boosting the effectiveness of therapeutic modalities such as chemotherapy, radiotherapy, photothermal, and photodynamic therapy (PTT/PDT). Here, we summarize the studies published in recent years on the use of nanotechnology in pharmaceutics to improve the efficacy of anti-PD-1 antibodies, analyze their characteristics and shortcomings, and combine with the current clinical research on anti-PD-1 antibodies to provide a reference for the design of future nanocarriers, so as to further expand the clinical application prospects of NDDSs. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guannan Guan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Drozdov AS, Komarova KS, Mochalova EN, Komedchikova EN, Shipunova VO, Nikitin MP. Fluorescent Magnetic Nanoparticles for Bioimaging through Biomimetic Surface Modification. Int J Mol Sci 2022; 24:ijms24010134. [PMID: 36613578 PMCID: PMC9820170 DOI: 10.3390/ijms24010134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Nanostructured materials and systems find various applications in biomedical fields. Hybrid organo-inorganic nanomaterials are intensively studied in a wide range of areas, from visualization to drug delivery or tissue engineering. One of the recent trends in material science is biomimetic approaches toward the synthesis or modification of functional nanosystems. Here, we describe an approach toward multifunctional nanomaterials through the biomimetic polymerization of dopamine derivatives. Magnetite nanoparticles were modified with a combination of dopamine conjugates to give multifunctional magneto-fluorescent nanocomposites in one synthetic step. The obtained material showed excellent biocompatibility at concentrations up to 200 μg/mL and an in vivo biodistribution profile typical for nanosized formulations. The synthesized systems were conjugated with antibodies against HER2 to improve their selectivity toward HER2-positive cancer cells. The produced material can be used for dual magneto-optical in vivo studies or targeted drug delivery. The applied synthetic strategy can be used for the creation of various multifunctional hybrid nanomaterials in mild conditions.
Collapse
Affiliation(s)
- Andrey S Drozdov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
| | - Kristina S Komarova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta N Mochalova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Elena N Komedchikova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
| | - Victoria O Shipunova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Maxim P Nikitin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
17
|
Rodrigues CF, Fernandes N, de Melo‐Diogo D, Correia IJ, Moreira AF. Cell-Derived Vesicles for Nanoparticles' Coating: Biomimetic Approaches for Enhanced Blood Circulation and Cancer Therapy. Adv Healthc Mater 2022; 11:e2201214. [PMID: 36121767 PMCID: PMC11481079 DOI: 10.1002/adhm.202201214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/11/2022] [Indexed: 01/28/2023]
Abstract
Cancer nanomedicines are designed to encapsulate different therapeutic agents, prevent their premature release, and deliver them specifically to cancer cells, due to their ability to preferentially accumulate in tumor tissue. However, after intravenous administration, nanoparticles immediately interact with biological components that facilitate their recognition by the immune system, being rapidly removed from circulation. Reports show that less than 1% of the administered nanoparticles effectively reach the tumor site. This suboptimal pharmacokinetic profile is pointed out as one of the main factors for the nanoparticles' suboptimal therapeutic effectiveness and poor translation to the clinic. Therefore, an extended blood circulation time may be crucial to increase the nanoparticles' chances of being accumulated in the tumor and promote a site-specific delivery of therapeutic agents. For that purpose, the understanding of the forces that govern the nanoparticles' interaction with biological components and the impact of the physicochemical properties on the in vivo fate will allow the development of novel and more effective nanomedicines. Therefore, in this review, the nano-bio interactions are summarized. Moreover, the application of cell-derived vesicles for extending the blood circulation time and tumor accumulation is reviewed, focusing on the advantages and shortcomings of each cell source.
Collapse
Affiliation(s)
- Carolina F. Rodrigues
- CICS‐UBI – Health Sciences Research CentreUniversidade da Beira InteriorAv. Infante D. HenriqueCovilhã6200‐506Portugal
| | - Natanael Fernandes
- CICS‐UBI – Health Sciences Research CentreUniversidade da Beira InteriorAv. Infante D. HenriqueCovilhã6200‐506Portugal
| | - Duarte de Melo‐Diogo
- CICS‐UBI – Health Sciences Research CentreUniversidade da Beira InteriorAv. Infante D. HenriqueCovilhã6200‐506Portugal
| | - Ilídio J. Correia
- CICS‐UBI – Health Sciences Research CentreUniversidade da Beira InteriorAv. Infante D. HenriqueCovilhã6200‐506Portugal
| | - André F. Moreira
- CICS‐UBI – Health Sciences Research CentreUniversidade da Beira InteriorAv. Infante D. HenriqueCovilhã6200‐506Portugal
- CPIRN‐UDI/IPG – Center of Potential and Innovation in Natural Resources, Research Unit for Inland DevelopmentInstituto Politécnico da GuardaAvenida Dr. Francisco de Sá CarneiroGuarda6300‐559Portugal
| |
Collapse
|
18
|
Mesas C, Garcés V, Martínez R, Ortiz R, Doello K, Dominguez-Vera JM, Bermúdez F, Porres JM, López-Jurado M, Melguizo C, Delgado-López JM, Prados J. Colon cancer therapy with calcium phosphate nanoparticles loading bioactive compounds from Euphorbia lathyris: In vitro and in vivo assay. Biomed Pharmacother 2022; 155:113723. [PMID: 36156367 DOI: 10.1016/j.biopha.2022.113723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
Amorphous calcium phosphate nanoparticles (ACP NPs) exhibit excellent biocompatibility and biodegradability properties. ACP NPs were functionalized with two coumarin compounds (esculetin and euphorbetin) extracted from Euphorbia lathyris seeds (BC-ACP NPs) showing high loading capacity (0.03% and 0.34% (w/w) for esculetin and euphorbetin, respectively) and adsorption efficiency (2.6% and 33.5%, respectively). BC-ACP NPs, no toxic to human blood cells, showed a more selective cytotoxicity against colorectal cancer (CRC) cells (T-84 cells) (IC50, 71.42 µg/ml) compared to non-tumor (CCD18) cells (IC50, 420.77 µg/ml). Both, the inhibition of carbonic anhydrase and autophagic cell death appeared to be involved in their action mechanism. Interestingly, in vivo treatment with BC-ACPs NPs using two different models of CRC induction showed a significant reduction in tumor volume (62%) and a significant decrease in the number and size of polyps. A poor development of tumor vasculature and invasion of normal tissue were also observed. Moreover, treatment increased the bacterial population of Akkermansia by restoring antioxidant systems in the colonic mucosa of mice. These results show a promising pathway to design innovative and more efficient therapies against CRC based on biomimetic calcium phosphate NPs loaded with natural products.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Víctor Garcés
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Rosario Martínez
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Kevin Doello
- Medical Oncology Service, Virgen de las Nieves Hospital, 18014 Granada, Spain
| | - Jose M Dominguez-Vera
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Francisco Bermúdez
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, La Cañada, 04128 Almería, Spain
| | - Jesús M Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - María López-Jurado
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain.
| | - José M Delgado-López
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
19
|
Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics 2022; 14:pharmaceutics14071506. [PMID: 35890401 PMCID: PMC9320085 DOI: 10.3390/pharmaceutics14071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology-based approaches for targeting the delivery and controlled release of metal-based therapeutic agents have revealed significant potential as tools for enhancing the therapeutic effect of metal-based agents and minimizing their systemic toxicities. In this context, a series of polymer-based nanosized systems designed to physically load or covalently conjugate metal-based therapeutic agents have been remarkably improving their bioavailability and anticancer efficacy. Initially, the polymeric nanocarriers were applied for platinum-based chemotherapeutic agents resulting in some nanoformulations currently in clinical tests and even in medical applications. At present, these nanoassemblies have been slowly expanding for nonplatinum-containing metal-based chemotherapeutic agents. Interestingly, for metal-based photosensitizers (PS) applied in photodynamic therapy (PDT), especially for cancer treatment, strategies employing polymeric nanocarriers have been investigated for almost 30 years. In this review, we address the polymeric nanocarrier-assisted metal-based therapeutics agent delivery systems with a specific focus on non-platinum systems; we explore some biological and physicochemical aspects of the polymer–metallodrug assembly. Finally, we summarize some recent advances in polymeric nanosystems coupled with metal-based compounds that present potential for successful clinical applications as chemotherapeutic or photosensitizing agents. We hope this review can provide a fertile ground for the innovative design of polymeric nanosystems for targeting the delivery and controlled release of metal-containing therapeutic agents.
Collapse
|
20
|
Volov A, Shkodenko L, Koshel E, Drozdov AS. Bio-Inspired Surface Modification of Magnetite Nanoparticles with Dopamine Conjugates. NANOMATERIALS 2022; 12:nano12132230. [PMID: 35808066 PMCID: PMC9268593 DOI: 10.3390/nano12132230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/25/2022]
Abstract
Organically-coated nanomaterials are intensively studied and find numerous applications in a wide range of areas from optics to biomedicine. One of the recent trends in material science is the application of bio-mimetic polydopamine coatings that can be produced on a variety of substrates in a cost-efficient way under mild conditions. Such coatings not only modify the biocompatibility of the material but also add functional amino groups to the surface that can be further modified by classic conjugation techniques. Here we show an alternative strategy for substrates modification using dopamine conjugates instead of native dopamine. Compared to the classic scheme, the proposed strategy allows separation of the “organic” and “colloidal” stages, and simplified identification and purification steps. Modification with pre-modified dopamine made it possible to achieve high loading capacities with active components up to 10.5% wt. A series of organo-inorganic hybrids were synthesized and their bioactivity was analyzed.
Collapse
Affiliation(s)
- Alexander Volov
- Department of Chemistry, Moscow State University, 119234 Moscow, Russia;
| | - Liubov Shkodenko
- SCAMT Institute, ITMO University, 191002 Saint Petersburg, Russia; (L.S.); (E.K.)
| | - Elena Koshel
- SCAMT Institute, ITMO University, 191002 Saint Petersburg, Russia; (L.S.); (E.K.)
| | - Andrey S. Drozdov
- Laboratory of Nanobiotechnologies, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia
- Correspondence:
| |
Collapse
|
21
|
Bragina VA, Khomyakova E, Orlov AV, Znoyko SL, Mochalova EN, Paniushkina L, Shender VO, Erbes T, Evtushenko EG, Bagrov DV, Lavrenova VN, Nazarenko I, Nikitin PI. Highly Sensitive Nanomagnetic Quantification of Extracellular Vesicles by Immunochromatographic Strips: A Tool for Liquid Biopsy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1579. [PMID: 35564289 PMCID: PMC9101557 DOI: 10.3390/nano12091579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles (EVs) are promising agents for liquid biopsy-a non-invasive approach for the diagnosis of cancer and evaluation of therapy response. However, EV potential is limited by the lack of sufficiently sensitive, time-, and cost-efficient methods for their registration. This research aimed at developing a highly sensitive and easy-to-use immunochromatographic tool based on magnetic nanoparticles for EV quantification. The tool is demonstrated by detection of EVs isolated from cell culture supernatants and various body fluids using characteristic biomarkers, CD9 and CD81, and a tumor-associated marker-epithelial cell adhesion molecules. The detection limit of 3.7 × 105 EV/µL is one to two orders better than the most sensitive traditional lateral flow system and commercial ELISA kits. The detection specificity is ensured by an isotype control line on the test strip. The tool's advantages are due to the spatial quantification of EV-bound magnetic nanolabels within the strip volume by an original electronic technique. The inexpensive tool, promising for liquid biopsy in daily clinical routines, can be extended to other relevant biomarkers.
Collapse
Affiliation(s)
- Vera A. Bragina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
| | - Elena Khomyakova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
| | - Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
- Moscow Institute of Physics and Technology, 9 Institutskii per., 141700 Dolgoprudny, Russia
| | - Sergey L. Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
| | - Elizaveta N. Mochalova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
- Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Liliia Paniushkina
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (L.P.); (I.N.)
| | - Victoria O. Shender
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, 1a Malaya Pirogovskaya St., 119992 Moscow, Russia; (V.O.S.); (V.N.L.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Evgeniy G. Evtushenko
- Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia; (E.G.E.); (D.V.B.)
| | - Dmitry V. Bagrov
- Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia; (E.G.E.); (D.V.B.)
| | - Victoria N. Lavrenova
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, 1a Malaya Pirogovskaya St., 119992 Moscow, Russia; (V.O.S.); (V.N.L.)
- Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia; (E.G.E.); (D.V.B.)
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (L.P.); (I.N.)
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (V.A.B.); (E.K.); (A.V.O.); (S.L.Z.); (E.N.M.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| |
Collapse
|
22
|
Mirkasymov AB, Zelepukin IV, Ivanov IN, Belyaev IB, Sh. Dzhalilova D, Trushina DB, Yaremenko AV, Yu. Ivanov V, Nikitin MP, Nikitin PI, Zvyagin AV, Deyev SM. Macrophage Blockade using Nature-Inspired Ferrihydrite for Enhanced Nanoparticle Delivery to Tumor. Int J Pharm 2022; 621:121795. [DOI: 10.1016/j.ijpharm.2022.121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
|