1
|
Zhou X, Zhu S, Li J, Mateus A, Williams C, Gilthorpe J, Backman LJ. Mechanical Loading Modulates AMPK and mTOR Signaling in Muscle Cells. J Proteome Res 2024; 23:4286-4295. [PMID: 39213513 PMCID: PMC11459513 DOI: 10.1021/acs.jproteome.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Skeletal muscle adaptation to exercise involves various phenotypic changes that enhance the metabolic and contractile functions. One key regulator of these adaptive responses is the activation of AMPK, which is influenced by exercise intensity. However, the mechanistic understanding of AMPK activation during exercise remains incomplete. In this study, we utilized an in vitro model to investigate the effects of mechanical loading on AMPK activation and its interaction with the mTOR signaling pathway. Proteomic analysis of muscle cells subjected to static loading (SL) revealed distinct quantitative protein alterations associated with RNA metabolism, with 10% SL inducing the most pronounced response compared to lower intensities of 5% and 2% as well as the control. Additionally, 10% SL suppressed RNA and protein synthesis while activating AMPK and inhibiting the mTOR pathway. We also found that SRSF2, necessary for pre-mRNA splicing, is regulated by AMPK and mTOR signaling, which, in turn, is regulated in an intensity-dependent manner by SL with the highest expression in 2% SL. Further examination showed that the ADP/ATP ratio was increased after 10% SL compared to the control and that SL induced changes in mitochondrial biogenesis. Furthermore, Seahorse assay results indicate that 10% SL enhances mitochondrial respiration. These findings provide novel insights into the cellular responses to mechanical loading and shed light on the intricate AMPK-mTOR regulatory network in muscle cells.
Collapse
Affiliation(s)
- Xin Zhou
- Department
of Medical and Translational Biology, Faculty of Medicine, Umeå University, 90187 Umeå, Sweden
| | - Shaochun Zhu
- Department
of Chemistry, Faculty of Medicine, Umeå
University, 90187 Umeå, Sweden
| | - Junhong Li
- Department
of Medical and Translational Biology, Faculty of Medicine, Umeå University, 90187 Umeå, Sweden
- Section
of Physiotherapy, Department of Community Medicine and Rehabilitation,
Faculty of Medicine, Umeå University, 90187 Umeå, Sweden
| | - Andre Mateus
- Department
of Chemistry, Faculty of Medicine, Umeå
University, 90187 Umeå, Sweden
| | - Chloe Williams
- Department
of Medical and Translational Biology, Faculty of Medicine, Umeå University, 90187 Umeå, Sweden
| | - Jonathan Gilthorpe
- Department
of Medical and Translational Biology, Faculty of Medicine, Umeå University, 90187 Umeå, Sweden
| | - Ludvig J. Backman
- Department
of Medical and Translational Biology, Faculty of Medicine, Umeå University, 90187 Umeå, Sweden
- Section
of Physiotherapy, Department of Community Medicine and Rehabilitation,
Faculty of Medicine, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
2
|
Li P, Fu L, Ning C, Wu J, Xu Z, Liao Z, Gao C, Sui X, Lin Y, Liu S, Yuan Z, Guo Q. Effect of tetrahedral framework nucleic acids on the reconstruction of tendon-to-bone injuries after rotator cuff tears. Cell Prolif 2024; 57:e13605. [PMID: 38282322 DOI: 10.1111/cpr.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/16/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
Clinicians and researchers have always faced challenges in performing surgery for rotator cuff tears (RCT) due to the intricate nature of the tendon-bone gradient and the limited long-term effectiveness. At the same time, the occurrence of an inflammatory microenvironment further aggravates tissue damage, which has a negative impact on the regeneration process of mesenchymal stem cells (MSCs) and eventually leads to the production of scar tissue. Tetrahedral framework nucleic acids (tFNAs), novel nanomaterials, have shown great potential in biomedicine due to their strong biocompatibility, excellent cellular internalisation ability, and unparalleled programmability. The objective of this research was to examine if tFNAs have a positive effect on regeneration after RCTs. Experiments conducted in a controlled environment demonstrated that tFNAs hindered the assembly of inflammasomes in macrophages, resulting in a decrease in the release of inflammatory factors. Next, tFNAs were shown to exert a protective effect on the osteogenic and chondrogenic differentiation of bone marrow MSCs under inflammatory conditions. The in vitro results also demonstrated the regulatory effect of tFNAs on tendon-related protein expression levels in tenocytes after inflammatory stimulation. Finally, intra-articular injection of tFNAs into a rat RCT model showed that tFNAs improved tendon-to-bone healing, suggesting that tFNAs may be promising tendon-to-bone protective agents for the treatment of RCTs.
Collapse
Affiliation(s)
- Pinxue Li
- Institute of Orthopedics, Chinese PLA General Hospital, the First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Liwei Fu
- Institute of Orthopedics, Chinese PLA General Hospital, the First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Chao Ning
- Institute of Orthopedics, Chinese PLA General Hospital, the First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Jiang Wu
- Institute of Orthopedics, Chinese PLA General Hospital, the First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Zizheng Xu
- Institute of Orthopedics, Chinese PLA General Hospital, the First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Zhiyao Liao
- Institute of Orthopedics, Chinese PLA General Hospital, the First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Cangjian Gao
- Institute of Orthopedics, Chinese PLA General Hospital, the First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Xiang Sui
- Institute of Orthopedics, Chinese PLA General Hospital, the First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, the First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, the First Medical Center, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, People's Republic of China
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
3
|
Li J, Zhou X, Chen J, Eliasson P, Kingham PJ, Backman LJ. Secretome from myoblasts statically loaded at low intensity promotes tenocyte proliferation via the IGF-1 receptor pathway. FASEB J 2023; 37:e23203. [PMID: 37732638 DOI: 10.1096/fj.202301097r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Exercise is widely recognized as beneficial for tendon healing. Recently, it has been described that muscle-derived molecules secreted in response to static exercise influence tendon healing. In this study, the optimal static loading intensity for tendon healing and the composition of secretome released by myoblasts in response to different intensities of static strain were investigated. In an in vitro coculture model, myoblasts were mechanically loaded using a Flexcell Tension System. Tenocytes were seeded on transwell inserts that allowed communication between the tenocytes and myoblasts without direct contact. Proliferation and migration assays, together with RNA sequencing, were used to determine potential cellular signaling pathways. The secretome from myoblasts exposed to 2% static loading increased the proliferation and migration of the cocultured tenocytes. RNA-seq analysis revealed that this loading condition upregulated the expression of numerous genes encoding secretory proteins, including insulin-like growth factor-1 (IGF-1). Confirmation of IGF-1 expression and secretion was carried out using qPCR and enzyme-linked immunosorbt assay (ELISA), revealing a statistically significant upregulation in response to 2% static loading in comparison to both control conditions and higher loading intensities of 5% and 10%. Addition of an inhibitor of the IGF-1 receptor (PQ401) to the tenocytes significantly reduced myoblast secretome-induced tenocyte proliferation. In conclusion, IGF-1 may be an important molecule in the statically loaded myoblast secretome, which is responsible for influencing tenocytes during exercise-induced healing.
Collapse
Affiliation(s)
- Junhong Li
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Xin Zhou
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, China
| | - Pernilla Eliasson
- Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Paul J Kingham
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Schulze-Tanzil GG. Healing of Ligaments and Tendons: Tissue Engineering and Models. Int J Mol Sci 2022; 23:ijms232415503. [PMID: 36555147 PMCID: PMC9778817 DOI: 10.3390/ijms232415503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The aim of this Special Issue is to summarize the latest developments in tendon/ligament research and tissue engineering (TE), providing helpful approaches for future tendon/ligament reconstruction (Figure 1) [...].
Collapse
Affiliation(s)
- Gundula Gesine Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|