1
|
Ferreira AI, Guimarães C, Macedo Silva V, Xavier S, Magalhães J, Cotter J. Alpha-1 antitrypsin deficiency and Pi*Z allele as important co-factors in the development of liver fibrosis. World J Hepatol 2024; 16:1099-1110. [PMID: 39221093 PMCID: PMC11362909 DOI: 10.4254/wjh.v16.i8.1099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency (AATD) is a codominant autosomal hereditary condition that predisposes patients to the development of lung and/or liver disease, and Pi*Z allele is the most clinically relevant mutation. AIM To evaluate the impact of clinical parameters and AATD phenotypes, particularly the Pi*Z allele, in liver fibrosis. METHODS Cross-sectional cohort study including consecutive patients with AATD followed in Pulmonology or Hepatology consultation. RESULTS Included 69 patients, 49.3% had Pi*MZ phenotype and 10.1% Pi*ZZ. An age ≥ 55 years, age at diagnosis ≥ 41 years and AAT at diagnosis < 77 mg/dL predicted a nonalcoholic fatty liver disease fibrosis score (NFS) not excluding advanced fibrosis [area under the curve (AUC) = 0.840, P < 0.001; AUC = 0.836, P < 0.001; AUC = 0.681, P = 0.025]. An age ≥ 50 years and age at diagnosis ≥ 41 years predicted a fibrosis-4 index of moderate to advanced fibrosis (AUC = 0.831, P < 0.001; AUC = 0.795, P < 0.001). Patients with hypertension, type 2 diabetes mellitus (DM), dyslipidaemia, metabolic syndrome, and regular alcohol consumption were more likely to have a NFS not excluding advanced fibrosis (P < 0.001, P = 0.002, P = 0.008, P < 0.001, P = 0.033). Patients with at least one Pi*Z allele and type 2 DM were 8 times more likely to have liver stiffness measurement ≥ 7.1 kPa (P = 0.040). CONCLUSION Risk factors for liver disease in AATD included an age ≥ 50 years, age at diagnosis ≥ 41 years, metabolic risk factors, regular alcohol consumption, at least one Pi*Z allele, and AAT value at diagnosis < 77 mg/dL. We created an algorithm for liver disease screening in AATD patients to use in primary care, selecting those to be referred to Hepatology consultation.
Collapse
Affiliation(s)
- Ana Isabel Ferreira
- Department of Gastroenterology, Hospital da Senhora da Oliveira - Guimarães, Guimarães 4835-044, Portugal
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga 4710-057, Portugal.
| | - Catarina Guimarães
- Department of Pulmonology, Hospital Senhora da Oliveira - Guimarães, Guimarães 4835-044, Portugal
| | - Vitor Macedo Silva
- Department of Gastroenterology, Hospital da Senhora da Oliveira - Guimarães, Guimarães 4835-044, Portugal
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga 4710-057, Portugal
| | - Sofia Xavier
- Department of Gastroenterology, Hospital da Senhora da Oliveira - Guimarães, Guimarães 4835-044, Portugal
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga 4710-057, Portugal
| | - Joana Magalhães
- Department of Gastroenterology, Hospital da Senhora da Oliveira - Guimarães, Guimarães 4835-044, Portugal
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga 4710-057, Portugal
| | - José Cotter
- Department of Gastroenterology, Hospital da Senhora da Oliveira - Guimarães, Guimarães 4835-044, Portugal
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga 4710-057, Portugal
| |
Collapse
|
2
|
Wang S, Zhang B, Mauck J, Loor JJ, Fan W, Tian Y, Yang T, Chang Y, Xie M, Aernouts B, Yang W, Xu C. Diacylglycerol O-acyltransferase (DGAT) isoforms play a role in peridroplet mitochondrial fatty acid metabolism in bovine liver. J Dairy Sci 2024:S0022-0302(24)00897-X. [PMID: 38851581 DOI: 10.3168/jds.2024-24738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024]
Abstract
Hepatocellular lipid accumulation characterizes fatty liver in dairy cows. Lipid droplets (LD), specialized organelles that store lipids and maintain cellular lipid homeostasis, are responsible for the ectopic storage of lipids associated with several metabolic disorders. In recent years, non-ruminant studies have reported that LD-mitochondria interactions play an important role in lipid metabolism. Due to the role of diacylglycerol acyltransferase isoforms (DGAT1 and DGAT2) in LD synthesis, we explored mechanisms of mitochondrial fatty acid transport in ketotic cows using liver biopsies and isolated primary hepatocytes. Compared with healthy cows, cows with fatty liver had massive accumulation of LD and high protein expression of the triglyceride (TAG) synthesis-related enzymes DGAT1 and DGAT2, LD synthesis-related proteins perilipin 2 (PLIN2) and perilipin 5 (PLIN5), and the mitochondrial fragmentation-related proteins dynamin-related protein 1 (DRP1) and fission 1 (FIS1). In contrast, factors associated with fatty acid oxidation, mitochondrial fusion and mitochondrial electron transport chain complex were lower compared with those in the healthy cows. In addition, transmission electron microscopy revealed significant contacts between LD-mitochondria in liver tissue from cows with fatty liver. Compared with isolated cytoplasmic mitochondria, expression of carnitine palmitoyl transferase 1A (CPT1A) and DRP1 was lower, but mitofusin 2 (MFN2) and mitochondrial electron transport chain complex was greater in isolated peridroplet mitochondria from hepatic tissue of cows with fatty liver. In vitro data indicated that exogenous free fatty acids (FFA) induced hepatocyte LD synthesis and mitochondrial dynamics consistent with in vivo results. Furthermore, DGAT2 inhibitor treatment attenuated the FFA-induced upregulation of PLIN2 and PLIN5 and rescued the impairment of mitochondrial dynamics. Inhibition of DGAT2 also restored mitochondrial membrane potential and reduced hepatocyte reactive oxygen species production. The present in vivo and in vitro results indicated there are functional differences among different types of mitochondria in the liver tissue of dairy cows with ketosis. Activity of DGAT2 may play a key role in maintaining liver mitochondrial function and lipid homeostasis in dairy cows during the transition period.
Collapse
Affiliation(s)
- Shuang Wang
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing 100193, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - John Mauck
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, 61801, USA
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, 61801, USA
| | - Wenwen Fan
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yan Tian
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Tianjiao Yang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yaqi Chang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Meng Xie
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ben Aernouts
- KU Leuven, Department of Biosystems, Biosystems Technology Cluster, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Wei Yang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing 100193, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
3
|
Poole B, Oshins R, Huo Z, Aranyos A, West J, Duarte S, Clark VC, Beduschi T, Zarrinpar A, Brantly M, Khodayari N. Sirtuin3 promotes the degradation of hepatic Z alpha-1 antitrypsin through lipophagy. Hepatol Commun 2024; 8:e0370. [PMID: 38285890 PMCID: PMC10830086 DOI: 10.1097/hc9.0000000000000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency (AATD) is a genetic disease caused by misfolding and accumulation of mutant alpha-1 antitrypsin (ZAAT) in the endoplasmic reticulum of hepatocytes. Hepatic ZAAT aggregates acquire a toxic gain-of-function that impacts the endoplasmic reticulum which is theorized to cause liver disease in individuals with AATD who present asymptomatic until late-stage cirrhosis. Currently, there is no treatment for AATD-mediated liver disease except liver transplantation. In our study of mitochondrial RNA, we identified that Sirtuin3 (SIRT3) plays a role in the hepatic phenotype of AATD. METHODS Utilizing RNA and protein analysis in an in vitro AATD model, we investigated the role of SIRT3 in the pathophysiology of AATD-mediated liver disease while also characterizing our novel, transgenic AATD mouse model. RESULTS We show lower expression of SIRT3 in ZAAT-expressing hepatocytes. In contrast, the overexpression of SIRT3 increases hepatic ZAAT degradation. ZAAT degradation mediated by SIRT3 appeared independent of proteasomal degradation and regular autophagy pathways. We observed that ZAAT-expressing hepatocytes have aberrant accumulation of lipid droplets, with ZAAT polymers localizing on the lipid droplet surface in a direct interaction with Perilipin2, which coats intracellular lipid droplets. SIRT3 overexpression also induced the degradation of lipid droplets in ZAAT-expressing hepatocytes. We observed that SIRT3 overexpression induces lipophagy by enhancing the interaction of Perilipin2 with HSC70. ZAAT polymers then degrade as a consequence of the mobilization of lipids through this process. CONCLUSIONS In this context, SIRT3 activation may eliminate the hepatic toxic gain-of-function associated with the polymerization of ZAAT, providing a rationale for a potential novel therapeutic approach to the treatment of AATD-mediated liver disease.
Collapse
Affiliation(s)
- Brittney Poole
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Regina Oshins
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health, University of Florida, Gainesville, Florida, USA
| | - Alek Aranyos
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Jesse West
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Sergio Duarte
- Department of Surgery, Division of Transplantation and Hepatobiliary Surgery, University of Florida, Gainesville, Florida, USA
| | - Virginia C. Clark
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, USA
| | - Thiago Beduschi
- Department of Surgery, Division of Transplantation and Hepatobiliary Surgery, University of Florida, Gainesville, Florida, USA
| | - Ali Zarrinpar
- Department of Surgery, Division of Transplantation and Hepatobiliary Surgery, University of Florida, Gainesville, Florida, USA
| | - Mark Brantly
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Nazli Khodayari
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Germain K, So RWL, DiGiovanni LF, Watts JC, Bandsma RHJ, Kim PK. Upregulated pexophagy limits the capacity of selective autophagy. Nat Commun 2024; 15:375. [PMID: 38195640 PMCID: PMC10776696 DOI: 10.1038/s41467-023-44005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
Selective autophagy is an essential process to maintain cellular homeostasis through the constant recycling of damaged or superfluous components. Over a dozen selective autophagy pathways mediate the degradation of diverse cellular substrates, but whether these pathways can influence one another remains unknown. We address this question using pexophagy, the autophagic degradation of peroxisomes, as a model. We show in cells that upregulated pexophagy impairs the selective autophagy of both mitochondria and protein aggregates by exhausting the autophagy initiation factor, ULK1. We confirm this finding in cell models of the pexophagy-mediated form of Zellweger Spectrum Disorder, a disease characterized by peroxisome dysfunction. Further, we extend the generalizability of limited selective autophagy by determining that increased protein aggregate degradation reciprocally reduces pexophagy using cell models of Parkinson's Disease and Huntington's Disease. Our findings suggest that the degradative capacity of selective autophagy can become limited by an increase in one substrate.
Collapse
Affiliation(s)
- Kyla Germain
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Raphaella W L So
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, M5T 0S8, Canada
| | - Laura F DiGiovanni
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Joel C Watts
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, M5T 0S8, Canada
| | - Robert H J Bandsma
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S1A8, Canada.
| | - Peter K Kim
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
5
|
Khan MQ, Hassan S, Lizaola-Mayo BC, Bhat M, Watt KD. Navigating the "specific etiology" steatohepatitis category: Evaluation and management of nonalcoholic/nonmetabolic dysfunction-associated steatohepatitis. Hepatology 2023:01515467-990000000-00637. [PMID: 37939197 DOI: 10.1097/hep.0000000000000674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Mohammad Qasim Khan
- Department of Internal Medicine, Division of Gastroenterology, University of Western Ontario, London, Ontario, Canada
| | - Sara Hassan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Blanca C Lizaola-Mayo
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, Arizona, USA
| | - Mamatha Bhat
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Toronto, Toronto, Ontario, Canada
| | - Kymberly D Watt
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Allende DS, Kleiner DE. Fatty liver disease that is neither metabolic nor alcoholic. Hum Pathol 2023; 141:212-221. [PMID: 36702356 PMCID: PMC10363575 DOI: 10.1016/j.humpath.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. This article aims to summary less common etiologies of fatty liver and their key clinicopathological features.
Collapse
Affiliation(s)
| | - David E Kleiner
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Costa MP, Ferreira AR, Rodrigues AT, Fagundes EDT, Queiroz TCN. CLINICAL, LABORATORIAL AND EVOLUTIONARY ASPECTS OF PEDIATRIC PATIENTS WITH LIVER DISEASE DUE TO ALPHA 1-ANTITRYPSIN DEFICIENCY. ARQUIVOS DE GASTROENTEROLOGIA 2023; 60:438-449. [PMID: 38018549 DOI: 10.1590/s0004-2803.230402023-71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/12/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Alpha 1-antitrypsin deficiency (AATD) is a hereditary codominant autosomal disease. This liver disease ranges from asymptomatic cases to terminal illness, which makes early recognition and diagnosis challenging. It is the main cause of pediatric liver transplantation after biliary atresia. OBJECTIVE To describe the clinical characteristics, as well as those of histologic and laboratory tests, phenotypic and/or genetic evaluation and evolution of a cohort of pediatric patients with AATD. METHODS This is a retrospective observational study of 39 patients with confirmed or probable AATD (without phenotyping or genotyping, but with suggestive clinical features, low serum alpha 1-antitrypsin (AAT) level and liver biopsy with PAS granules, resistant diastasis). Clinical, laboratory and histological varia-bles, presence of portal hypertension (PH) and survival with native liver have been analyzed. RESULTS A total of 66.7% of 39 patients were male (26/39). The initial manifestation was cholestatic jaundice in 79.5% (31/39). Liver transplantation was performed in 28.2% (11/39) of patients. Diagnosis occurred at an average of 3.1 years old and liver transplantation at 4.1 years of age. 89.2% (25/28) of the patients with confirmed AATD were PI*ZZ or ZZ. The average AAT value on admission for PI*ZZ or ZZ patients was 41.6 mg/dL. All transplanted patients with phenotyping or genotyping were PI*ZZ (or ZZ). Those who were jaundiced on admission were earlier referred to the specialized service and had higher levels of GGT and platelets on admission. There was no significant difference in the survival curve when comparing cholestatic jaundiced to non-cholestatic jaundiced patients on admission. Comparing patients who did or did not progress to PH, higher levels of AST and APRI score at diagnosis (P=0.011 and P=0.026, respectively) were observed and in the survival curves patients with PH showed impairment, with 20.2% survival with native liver in 15 years. CONCLUSION Jaundice is an important clinical sign that motivates referral to a specialist, but it does not seem to compromise survival with native liver. Patients progressing to PH had higher AST, APRi score on admission and significantly impaired survival with native liver. It is important to pay attention to these signs in the follow-up of patients with AATD.
Collapse
Affiliation(s)
- Mariana Pena Costa
- Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | | | |
Collapse
|
8
|
Pérez-Luz S, Lalchandani J, Matamala N, Barrero MJ, Gil-Martín S, Saz SRD, Varona S, Monzón S, Cuesta I, Justo I, Marcacuzco A, Hierro L, Garfia C, Gomez-Mariano G, Janciauskiene S, Martínez-Delgado B. Quantitative Lipid Profiling Reveals Major Differences between Liver Organoids with Normal Pi*M and Deficient Pi*Z Variants of Alpha-1-antitrypsin. Int J Mol Sci 2023; 24:12472. [PMID: 37569847 PMCID: PMC10419530 DOI: 10.3390/ijms241512472] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Different mutations in the SERPINA1 gene result in alpha-1 antitrypsin (AAT) deficiency and in an increased risk for the development of liver diseases. More than 90% of severe deficiency patients are homozygous for Z (Glu342Lys) mutation. This mutation causes Z-AAT polymerization and intrahepatic accumulation which can result in hepatic alterations leading to steatosis, fibrosis, cirrhosis, and/or hepatocarcinoma. We aimed to investigate lipid status in hepatocytes carrying Z and normal M alleles of the SERPINA1 gene. Hepatic organoids were developed to investigate lipid alterations. Lipid accumulation in HepG2 cells overexpressing Z-AAT, as well as in patient-derived hepatic organoids from Pi*MZ and Pi*ZZ individuals, was evaluated by Oil-Red staining in comparison to HepG2 cells expressing M-AAT and liver organoids from Pi*MM controls. Furthermore, mass spectrometry-based lipidomics analysis and transcriptomic profiling were assessed in Pi*MZ and Pi*ZZ organoids. HepG2 cells expressing Z-AAT and liver organoids from Pi*MZ and Pi*ZZ patients showed intracellular accumulation of AAT and high numbers of lipid droplets. These latter paralleled with augmented intrahepatic lipids, and in particular altered proportion of triglycerides, cholesterol esters, and cardiolipins. According to transcriptomic analysis, Pi*ZZ organoids possess many alterations in genes and cellular processes of lipid metabolism with a specific impact on the endoplasmic reticulum, mitochondria, and peroxisome dysfunction. Our data reveal a relationship between intrahepatic accumulation of Z-AAT and alterations in lipid homeostasis, which implies that liver organoids provide an excellent model to study liver diseases related to the mutation of the SERPINA1 gene.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Jaanam Lalchandani
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Nerea Matamala
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Maria Jose Barrero
- Models and Mechanisms Unit, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain;
| | - Sara Gil-Martín
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| | - Sheila Ramos-Del Saz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Sarai Varona
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Sara Monzón
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Isabel Cuesta
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Iago Justo
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Alberto Marcacuzco
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Loreto Hierro
- Paediatric Hepatology Service, Research Institute of University Hospital La Paz, (IdiPAZ), 28046 Madrid, Spain;
| | - Cristina Garfia
- Digestive Department, Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Gema Gomez-Mariano
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, 30625 Hannover, Germany;
| | - Beatriz Martínez-Delgado
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| |
Collapse
|
9
|
Perez-Luz S, Matamala N, Gomez-Mariano G, Janciauskiene S, Martínez-Delgado B. NAFLD and AATD Are Two Diseases with Unbalanced Lipid Metabolism: Similarities and Differences. Biomedicines 2023; 11:1961. [PMID: 37509601 PMCID: PMC10377048 DOI: 10.3390/biomedicines11071961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a type of steatosis commonly associated with obesity, dyslipidemia, hypertension, and diabetes. Other diseases such as inherited alpha-1 antitrypsin deficiency (AATD) have also been related to the development of liver steatosis. The primary reasons leading to hepatic lipid deposits can be genetic and epigenetic, and the outcomes range from benign steatosis to liver failure, as well as to extrahepatic diseases. Progressive hepatocellular damage and dysregulated systemic immune responses can affect extrahepatic organs, specifically the heart and lungs. In this review, we discuss the similarities and differences between the molecular pathways of NAFLD and AATD, and the putative value of hepatic organoids as novel models to investigate the physio pathological mechanisms of liver steatosis.
Collapse
Affiliation(s)
- Sara Perez-Luz
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain
| | - Nerea Matamala
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain
| | - Gema Gomez-Mariano
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain
| | - Sabina Janciauskiene
- Department of Respiratory Medicine and Infectious Diseases, Biomedical Research in Endstage and Obstructive Lung Disease Hannover BREATH, Member of the German Center for Lung Research DZL, Hannover Medical School, 30625 Hannover, Germany
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, CIBERER U758, 28029 Madrid, Spain
| |
Collapse
|
10
|
Fung C, Wilding B, Schittenhelm RB, Bryson-Richardson RJ, Bird PI. Expression of the Z Variant of α1-Antitrypsin Suppresses Hepatic Cholesterol Biosynthesis in Transgenic Zebrafish. Int J Mol Sci 2023; 24:ijms24032475. [PMID: 36768797 PMCID: PMC9917206 DOI: 10.3390/ijms24032475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Individuals homozygous for the Pi*Z allele of SERPINA1 (ZAAT) are susceptible to lung disease due to insufficient α1-antitrypsin secretion into the circulation and may develop liver disease due to compromised protein folding that leads to inclusion body formation in the endoplasmic reticulum (ER) of hepatocytes. Transgenic zebrafish expressing human ZAAT show no signs of hepatic accumulation despite displaying serum insufficiency, suggesting the defect in ZAAT secretion occurs independently of its tendency to form inclusion bodies. In this study, proteomic, transcriptomic, and biochemical analysis provided evidence of suppressed Srebp2-mediated cholesterol biosynthesis in the liver of ZAAT-expressing zebrafish. To investigate the basis for this perturbation, CRISPR/Cas9 gene editing was used to manipulate ER protein quality control factors. Mutation of erlec1 resulted in a further suppression in the cholesterol biosynthesis pathway, confirming a role for this ER lectin in targeting misfolded ZAAT for ER-associated degradation (ERAD). Mutation of the two ER mannosidase homologs enhanced ZAAT secretion without inducing hepatic accumulation. These insights into hepatic ZAAT processing suggest potential therapeutic targets to improve secretion and alleviate serum insufficiency in this form of the α1-antitrypsin disease.
Collapse
Affiliation(s)
- Connie Fung
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
- Correspondence: (C.F.); (P.I.B.)
| | - Brendan Wilding
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash University, Melbourne 3800, Australia
| | | | - Phillip I. Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
- Correspondence: (C.F.); (P.I.B.)
| |
Collapse
|
11
|
Fibrosis-Related Gene Profiling in Liver Biopsies of PiZZ α1-Antitrypsin Children with Different Clinical Courses. Int J Mol Sci 2023; 24:ijms24032485. [PMID: 36768808 PMCID: PMC9916468 DOI: 10.3390/ijms24032485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
PiZZ (Glu342Lys) α1-antitrypsin deficiency (AATD) is characterized by intrahepatic AAT polymerization and is a risk factor for liver disease development in children. The majority of PiZZ children are disease free, hence this mutation alone is not sufficient to cause the disease. We investigated Z-AAT polymers and the expression of fibrosis-related genes in liver tissues of PiZZ children with different clinical courses. Liver biopsies obtained during 1979-2010 at the Department of Paediatrics, Karolinska University Hospital, Sweden, were subjected to histological re-evaluation, immunohistochemistry and NanoString-based transcriptome profiling using a panel of 760 fibrosis plus 8 bile acid-related genes. Subjects were divided into three groups based on clinical outcomes: NCH (neonatal cholestasis, favourable outcome, n = 5), NCC (neonatal cholestasis, early cirrhosis and liver transplantation, n = 4), and NNCH (no neonatal cholestasis, favourable outcome, n = 5, six biopsies). Hepatocytes containing Z-AAT polymers were abundant in all groups whereas NCC showed higher expression of genes related to liver fibrosis/cirrhosis and lower expression of genes related to lipid, aldehyde/ketone, and bile acid metabolism. Z-AAT accumulation per se cannot explain the clinical outcomes of PiZZ children; however, changes in the expression of specific genes and pathways involved in lipid, fatty acid, and steroid metabolism appear to reflect the degree of liver injury.
Collapse
|
12
|
Khodayari N, Oshins R, Aranyos AM, Duarte S, Mostofizadeh S, Lu Y, Brantly M. Characterization of hepatic inflammatory changes in a C57BL/6J mouse model of alpha1-antitrypsin deficiency. Am J Physiol Gastrointest Liver Physiol 2022; 323:G594-G608. [PMID: 36256438 DOI: 10.1152/ajpgi.00207.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a genetic disease caused by a hepatic accumulation of mutant alpha-1 antitrypsin (ZAAT). Individuals with AATD are prone to develop a chronic liver disease that remains undiagnosed until late stage of the disease. Here, we sought to characterize the liver pathophysiology of a human transgenic mouse model for AATD with a manifestation of liver disease compared with normal transgenic mice model. Male and female transgenic mice for normal (Pi*M) and mutant variant (Pi*Z) human alpha-1 antitrypsin at 3 and 6 mo of age were subjected to this study. The progression of hepatic ZAAT accumulation, hepatocyte injury, steatosis, liver inflammation, and fibrotic features were monitored by performing an in vivo study. We have also performed a Next-Gene transcriptomic analysis of the transgenic mice liver tissue 16 h after lipopolysaccharide (LPS) administration to delineate liver inflammatory response in Pi*Z mice as compared with Pi*M. Our results show hepatic ZAAT accumulation, followed by hepatocyte ballooning and liver steatosis developed at 3 mo in Pi*Z mice compared with the mice carrying normal variant of human alpha-1 antitrypsin. We observed higher levels of hepatic immune cell infiltrations in both 3- and 6-mo-old Pi*Z mice compared with Pi*M as an indication of liver inflammation. Liver fibrosis was observed as accumulation of collagen in 6-mo-old Pi*Z liver tissues compared with Pi*M control mice. Furthermore, the transcriptomic analysis revealed a dysregulated liver immune response to LPS in Pi*Z mice compared with Pi*M. Of particular interest for translational work, this study aims to establish a mouse model of AATD with a strong manifestation of liver disease that will be a valuable in vivo tool to study the pathophysiology of AATD-mediated liver disease. Our data suggest that the human transgenic mouse model of AATD could provide a suitable model for the evaluation of therapeutic approaches and preventive reagents against AATD-mediated liver disease.NEW & NOTEWORTHY We have characterized a mouse model of human alpha-1 antitrypsin deficiency with a strong manifestation of liver disease that can be used as an in vivo tool to test preventive and therapeutic reagents. Our data explores the altered immunophenotype of alpha-1 antitrypsin-deficient liver macrophages and suggests a relationship between acute inflammation, immune response, and fibrosis.
Collapse
Affiliation(s)
- Nazli Khodayari
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Regina Oshins
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Alek M Aranyos
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Sergio Duarte
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida
| | - Sayedamin Mostofizadeh
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Yuanqing Lu
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Mark Brantly
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
13
|
Lu Y, Wang LR, Lee J, Mohammad NS, Aranyos AM, Gould C, Khodayari N, Oshins RA, Moneypenny CG, Brantly ML. The unfolded protein response to PI*Z alpha-1 antitrypsin in human hepatocellular and murine models. Hepatol Commun 2022; 6:2354-2367. [PMID: 35621045 PMCID: PMC9426387 DOI: 10.1002/hep4.1997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 12/18/2022] Open
Abstract
Alpha-1 antitrypsin (AAT) deficiency (AATD) is an inherited disease caused by mutations in the serpin family A member 1 (SERPINA1, also known as AAT) gene. The most common variant, PI*Z (Glu342Lys), causes accumulation of aberrantly folded AAT in the endoplasmic reticulum (ER) of hepatocytes that is associated with a toxic gain of function, hepatocellular injury, liver fibrosis, and hepatocellular carcinoma. The unfolded protein response (UPR) is a cellular response to improperly folded proteins meant to alleviate ER stress. It has been unclear whether PI*Z AAT elicits liver cell UPR, due in part to limitations of current cellular and animal models. This study investigates whether UPR is activated in a novel human PI*Z AAT cell line and a new PI*Z human AAT (hAAT) mouse model. A PI*Z AAT hepatocyte cell line (Huh7.5Z) was established using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing of the normal ATT (PI*MM) gene in the Huh7.5 cell line. Additionally, novel full-length genomic DNA PI*Z hAAT and PI*M hAAT transgenic mouse models were established. Using these new models, UPR in Huh7.5Z cells and PI*Z mice were comprehensively determined. Robust activation of UPR was observed in Huh7.5Z cells compared to Huh7.5 cells. Activated caspase cascade and apoptosis markers, increased chaperones, and autophagy markers were also detected in Z hepatocytes. Selective attenuation of UPR signaling branches was observed in PI*Z hAAT mice in which the protein kinase R-like ER kinase and inositol-requiring enzyme1α branches were suppressed while the activating transcription factor 6α branch remained active. This study provides direct evidence that PI*Z AAT triggers canonical UPR and that hepatocytes survive pro-apoptotic UPR by selective suppression of UPR branches. Our data improve understanding of underlying pathological molecular mechanisms of PI*Z AATD liver disease.
Collapse
Affiliation(s)
- Yuanqing Lu
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Liqun R. Wang
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Naweed S. Mohammad
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Alek M. Aranyos
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Calvin Gould
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Nazli Khodayari
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Regina A. Oshins
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Craig G. Moneypenny
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Mark L. Brantly
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| |
Collapse
|
14
|
D'Acunto E, Gianfrancesco L, Serangeli I, D'Orsi M, Sabato V, Guadagno NA, Bhosale G, Caristi S, Failla AV, De Jaco A, Cacci E, Duchen MR, Lupo G, Galliciotti G, Miranda E. Polymerogenic neuroserpin causes mitochondrial alterations and activates NFκB but not the UPR in a neuronal model of neurodegeneration FENIB. Cell Mol Life Sci 2022; 79:437. [PMID: 35864382 PMCID: PMC9304071 DOI: 10.1007/s00018-022-04463-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/10/2022] [Accepted: 07/02/2022] [Indexed: 12/02/2022]
Abstract
The neurodegenerative condition FENIB (familiar encephalopathy with neuroserpin inclusion bodies) is caused by heterozygous expression of polymerogenic mutant neuroserpin (NS), with polymer deposition within the endoplasmic reticulum (ER) of neurons. We generated transgenic neural progenitor cells (NPCs) from mouse fetal cerebral cortex stably expressing either the control protein GFP or human wild type, polymerogenic G392E or truncated (delta) NS. This cellular model makes it possible to study the toxicity of polymerogenic NS in the appropriated cell type by in vitro differentiation to neurons. Our previous work showed that expression of G392E NS in differentiated NPCs induced an adaptive response through the upregulation of several genes involved in the defence against oxidative stress, and that pharmacological reduction of the antioxidant defences by drug treatments rendered G392E NS neurons more susceptible to apoptosis than control neurons. In this study, we assessed mitochondrial distribution and found a higher percentage of perinuclear localisation in G392E NS neurons, particularly in those containing polymers, a phenotype that was enhanced by glutathione chelation and rescued by antioxidant molecules. Mitochondrial membrane potential and contact sites between mitochondria and the ER were reduced in neurons expressing the G392E mutation. These alterations were associated with a pattern of ER stress that involved the ER overload response but not the unfolded protein response. Our results suggest that intracellular accumulation of NS polymers affects the interaction between the ER and mitochondria, causing mitochondrial alterations that contribute to the neuronal degeneration seen in FENIB patients.
Collapse
Affiliation(s)
- E D'Acunto
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - L Gianfrancesco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - I Serangeli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - M D'Orsi
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - V Sabato
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - N A Guadagno
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - G Bhosale
- Department of Cell and Developmental Biology, University College London, London, UK
| | - S Caristi
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - A V Failla
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A De Jaco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - E Cacci
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - M R Duchen
- Department of Cell and Developmental Biology, University College London, London, UK
| | - G Lupo
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - G Galliciotti
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
- Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|