1
|
Zhang P, Wang J, Yang Y, Pan J, Bai X, Zhou T, Lai T. Virus-Induced galactinol-sucrose galactosyltransferase 2 Silencing Delays Tomato Fruit Ripening. PLANTS (BASEL, SWITZERLAND) 2024; 13:2650. [PMID: 39339626 PMCID: PMC11434899 DOI: 10.3390/plants13182650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Tomato fruit ripening is an elaborate genetic trait correlating with significant changes at physiological and biochemical levels. Sugar metabolism plays an important role in this highly orchestrated process and ultimately determines the quality and nutritional value of fruit. However, the mode of molecular regulation is not well understood. Galactinoal-sucrose galactosyltransferase (GSGT), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), can transfer the galactose unit from 1-α-D-galactosyl-myo-inositol to sucrose and yield raffinose, or catalyze the reverse reaction. In the present study, the expression of SlGSGT2 was decreased by Potato Virus X (PVX)-mediated gene silencing, which led to an unripe phenotype in tomato fruit. The physiological and biochemical changes induced by SlGSGT2 silencing suggested that the process of fruit ripening was delayed as well. SlGSGT2 silencing also led to significant changes in gene expression levels associated with ethylene production, pigment accumulation, and ripening-associated transcription factors (TFs). In addition, the interaction between SlGSGT2 and SlSPL-CNR indicated a possible regulatory mechanism via ripening-related TFs. These findings would contribute to illustrating the biological functions of GSGT2 in tomato fruit ripening and quality forming.
Collapse
Affiliation(s)
- Pengcheng Zhang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Jingjing Wang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Yajie Yang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Jingjing Pan
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Xuelian Bai
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Ting Zhou
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Tongfei Lai
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
2
|
Xu M, Hu J, Li H, Li K, Xu D. Research overview on the genetic mechanism underlying the biosynthesis of polysaccharide in tuber plants. PeerJ 2024; 12:e17052. [PMID: 38464751 PMCID: PMC10924778 DOI: 10.7717/peerj.17052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Tuber plants are of great significance in the world as human food crops. Polysaccharides, important metabolites in tuber plants, also serve as a source of innovative drugs with significant pharmacological effects. These drugs are particularly known for their immunomodulation and antitumor properties. To fully exploit the potential value of tuber plant polysaccharides and establish a synthetic system for their targeted synthesis, it is crucial to dissect their metabolic processes and genetic regulatory mechanisms. In this article, we provide a comprehensive summary of the basic pathways involved in the synthesis of various types of tuber plant polysaccharides. We also outline the key research progress that has been made in this area in recent years. We classify the main types and functions of tuber plant polysaccharides and analyze the biosynthetic processes and genetic regulation mechanisms of key enzymes involved in the metabolic pathways of starch, cellulose, pectin, and fructan in tuber plants. We have identified hexokinase and glycosyltransferase as the key enzymes involved in the polysaccharide synthesis process. By elucidating the synthesis pathway of polysaccharides in tuber plants and understanding the underlying mechanism of action of key enzymes in the metabolic pathway, we can provide a theoretical framework for enhancing the yield of polysaccharides and other metabolites in plant culture cells. This will ultimately lead to increased production efficiency.
Collapse
Affiliation(s)
- Mengwei Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiao Hu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hongwei Li
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunqian Li
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
- Guizhou Provincial Demonstration Center of Basic Medical Experimental Teaching, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Qi C, Xv L, Xia W, Zhu Y, Wang Y, Zhang Z, Dai H, Miao M. Genome-Wide Identification and Expression Patterns of Cucumber Invertases and Their Inhibitor Genes. Int J Mol Sci 2023; 24:13421. [PMID: 37686228 PMCID: PMC10487868 DOI: 10.3390/ijms241713421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Invertases and their inhibitors play important roles in sucrose metabolism, growth and development, signal transduction, and biotic and abiotic stress tolerance in many plant species. However, in cucumber, both the gene members and functions of invertase and its inhibitor families remain largely unclear. In this study, in comparison with the orthologues of Citrullus lanatus (watermelon), Cucumis melo (melon), and Arabidopsis thaliana (Arabidopsis), 12 invertase genes and 12 invertase inhibitor genes were identified from the genome of Cucumis sativus (cucumber). Among them, the 12 invertase genes were classified as 4 cell wall invertases, 6 cytoplasmic invertases, and 2 vacuolar invertases. Most invertase genes were conserved in cucumber, melon, and watermelon, with several duplicate genes in melon and watermelon. Transcriptome analysis distinguished these genes into various expression patterns, which included genes CsaV3_2G025540 and CsaV3_2G007220, which were significantly expressed in different tissues, organs, and development stages, and genes CsaV3_7G034730 and CsaV3_5G005910, which might be involved in biotic and abiotic stress. Six genes were further validated in cucumber based on quantitative real-time PCR (qRT-PCR), and three of them showed consistent expression patterns as revealed in the transcriptome. These results provide important information for further studies on the physiological functions of cucumber invertases (CSINVs) and their inhibitors (CSINHs).
Collapse
Affiliation(s)
- Chenze Qi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Liyun Xv
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Wenhao Xia
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Yunyi Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Yudan Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Zhiping Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Haibo Dai
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Minmin Miao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics, The Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Sanyal R, Kumar S, Pattanayak A, Kar A, Bishi SK. Optimizing raffinose family oligosaccharides content in plants: A tightrope walk. FRONTIERS IN PLANT SCIENCE 2023; 14:1134754. [PMID: 37056499 PMCID: PMC10088399 DOI: 10.3389/fpls.2023.1134754] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Plants synthesize various compounds for their growth, metabolism, and stress mitigation, and one such group of compounds is the raffinose family of oligosaccharides (RFOs). RFOs are non-reducing oligosaccharides having galactose residues attached to a sucrose moiety. They act as carbohydrate reserves in plants, assisting in seed germination, desiccation tolerance, and biotic/abiotic stress tolerance. Although legumes are among the richest sources of dietary proteins, the direct consumption of legumes is hindered by an excess of RFOs in the edible parts of the plant, which causes flatulence in humans and monogastric animals. These opposing characteristics make RFOs manipulation a complicated tradeoff. An in-depth knowledge of the chemical composition, distribution pattern, tissue mobilization, and metabolism is required to optimize the levels of RFOs. The most recent developments in our understanding of RFOs distribution, physiological function, genetic regulation of their biosynthesis, transport, and degradation in food crops have been covered in this review. Additionally, we have suggested a few strategies that can sustainably reduce RFOs in order to solve the flatulence issue in animals. The comprehensive information in this review can be a tool for researchers to precisely control the level of RFOs in crops and create low antinutrient, nutritious food with wider consumer acceptability.
Collapse
Affiliation(s)
- Rajarshi Sanyal
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Sandeep Kumar
- Automation & Plant Engineering Division, ICAR-National Institute of Secondary Agriculture, Ranchi, Jharkhand, India
| | - Arunava Pattanayak
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Abhijit Kar
- Automation & Plant Engineering Division, ICAR-National Institute of Secondary Agriculture, Ranchi, Jharkhand, India
| | - Sujit K. Bishi
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|