1
|
Baltazar-García EA, Vargas-Guerrero B, Lima A, Boavida Ferreira R, Mendoza-Magaña ML, Ramírez-Herrera MA, Baltazar-Díaz TA, Domínguez-Rosales JA, Salazar-Montes AM, Gurrola-Díaz CM. Deflamin Attenuated Lung Tissue Damage in an Ozone-Induced COPD Murine Model by Regulating MMP-9 Catalytic Activity. Int J Mol Sci 2024; 25:5063. [PMID: 38791100 PMCID: PMC11121448 DOI: 10.3390/ijms25105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is comprised of histopathological alterations such as pulmonary emphysema and peribronchial fibrosis. Matrix metalloproteinase 9 (MMP-9) is one of the key enzymes involved in both types of tissue remodeling during the development of lung damage. In recent studies, it was demonstrated that deflamin, a protein component extracted from Lupinus albus, markedly inhibits the catalytic activity of MMP-9 in experimental models of colon adenocarcinoma and ulcerative colitis. Therefore, in the present study, we investigated for the first time the biological effect of deflamin in a murine COPD model induced by chronic exposure to ozone. Ozone exposure was carried out in C57BL/6 mice twice a week for six weeks for 3 h each time, and the treated group was orally administered deflamin (20 mg/kg body weight) after each ozone exposure. The histological results showed that deflamin attenuated pulmonary emphysema and peribronchial fibrosis, as evidenced by H&E and Masson's trichrome staining. Furthermore, deflamin administration significantly decreased MMP-9 activity, as assessed by fluorogenic substrate assay and gelatin zymography. Interestingly, bioinformatic analysis reveals a plausible interaction between deflamin and MMP-9. Collectively, our findings demonstrate the therapeutic potential of deflamin in a COPD murine model, and suggest that the attenuation of the development of lung tissue damage occurs by deflamin-regulated MMP-9 catalytic activity.
Collapse
Affiliation(s)
- Elia Ana Baltazar-García
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (E.A.B.-G.); (B.V.-G.); (T.A.B.-D.); (J.A.D.-R.); (A.M.S.-M.)
| | - Belinda Vargas-Guerrero
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (E.A.B.-G.); (B.V.-G.); (T.A.B.-D.); (J.A.D.-R.); (A.M.S.-M.)
| | - Ana Lima
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 376, 1749-024 Lisbon, Portugal;
| | - Ricardo Boavida Ferreira
- LEAF—Landscape Environment Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal;
| | - María Luisa Mendoza-Magaña
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (M.L.M.-M.); (M.A.R.-H.)
| | - Mario Alberto Ramírez-Herrera
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (M.L.M.-M.); (M.A.R.-H.)
| | - Tonatiuh Abimael Baltazar-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (E.A.B.-G.); (B.V.-G.); (T.A.B.-D.); (J.A.D.-R.); (A.M.S.-M.)
| | - José Alfredo Domínguez-Rosales
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (E.A.B.-G.); (B.V.-G.); (T.A.B.-D.); (J.A.D.-R.); (A.M.S.-M.)
| | - Adriana María Salazar-Montes
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (E.A.B.-G.); (B.V.-G.); (T.A.B.-D.); (J.A.D.-R.); (A.M.S.-M.)
| | - Carmen Magdalena Gurrola-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Puerta peatonal 7, Col. Independencia, Guadalajara 44350, Jalisco, Mexico; (E.A.B.-G.); (B.V.-G.); (T.A.B.-D.); (J.A.D.-R.); (A.M.S.-M.)
| |
Collapse
|
2
|
Mota J, Faria-Silva C, Resendes A, Santos MI, Carvalheiro MC, Lima A, Simões S. Silymarin inhibits dermal gelatinolytic activity and reduces cutaneous inflammation. Nat Prod Res 2024:1-12. [PMID: 38684022 DOI: 10.1080/14786419.2024.2347452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Milk thistle (Silybum marianum) is well-known for its antioxidant activity due to the presence of silymarin. Albeit some studies show a potential for skin inflammation, its activity against dermal MMP-9 and MMP-2 remains to be studied. Silymarin isolated from an S. marianum herbal extract was tested for gelatinase inhibition in the presence of isolated MMP-9 and in dermal adenocarcinome HaCaT cells. Silymarin was then further tested in vivo, using a cutaneous inflammation mice model mediated by reactive oxygen species. Silymarin was able to significantly inhibit gelatinolytic activity in vitro without impairing cell growth and viability. Furthermore, inhibition was more pronounced in cells than with the isolated gelatinase, suggesting an additional effect upon metabolic pathways. In vivo, silymarin was able to reduce ear edema up to 74% and attenuated histological lesions. Results highlight silymarin potential for application in skin inflammatory disorders via gelatinase inhibition.
Collapse
Affiliation(s)
- Joana Mota
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - Catarina Faria-Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Resendes
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Maria Isabel Santos
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - Manuela Colla Carvalheiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Lima
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
do Nascimento RDP, da Rocha Alves M, Noguera NH, Lima DC, Marostica Junior MR. Cereal grains and vegetables. NATURAL PLANT PRODUCTS IN INFLAMMATORY BOWEL DISEASES 2023:103-172. [DOI: 10.1016/b978-0-323-99111-7.00014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Therapeutic Potential of Deflamin against Colorectal Cancer Development and Progression. Cancers (Basel) 2022; 14:cancers14246182. [PMID: 36551666 PMCID: PMC9776913 DOI: 10.3390/cancers14246182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a crucial role in tumor microenvironment remodeling, contributing to inflammatory and angiogenic processes, and ultimately promoting tumor maintenance and progression. Several studies on bioactive polypeptides isolated from legumes have shown anti-migratory, anti-MMPs, and anti-tumor effects, potentially constituting novel strategies for both the prevention and progression of cancer. In this work, we investigated the anti-tumor role of deflamin, a protein oligomer isolated from white lupine seeds (Lupinus albus) reported to inhibit MMP-9 and cell migration in colorectal cancer (CRC) cell lines. We found that deflamin exerts an inhibitory effect on tumor growth and metastasis formation, contributing to increased tumor apoptosis in the xenotransplanted zebrafish larvae model. Furthermore, deflamin resulted not only in a significant reduction in MMP-2 and MMP-9 activity but also in impaired cancer cell migration and invasion in vitro. Using the xenograft zebrafish model, we observed that deflamin inhibits collagen degradation and angiogenesis in the tumor microenvironment in vivo. Overall, our work reveals the potential of deflamin as an agent against CRC development and progression.
Collapse
|
5
|
Duarte C, Nunes M, Gojard P, Dias C, Ferreira J, Prista C, Noronha P, Sousa I. Use of European pulses to produce functional beverages – From chickpea and lupin as dairy alternatives. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Ishaq AR, El-Nashar HAS, Younis T, Mangat MA, Shahzadi M, Ul Haq AS, El-Shazly M. Genus Lupinus (Fabaceae): a review of ethnobotanical, phytochemical and biological studies. J Pharm Pharmacol 2022; 74:1700-1717. [PMID: 36039938 DOI: 10.1093/jpp/rgac058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/28/2022] [Indexed: 11/14/2022]
Abstract
OBJECTIVES Lupinus is a large and diverse genus comprising approximately 200 species, belonging to the family Fabaceae. Lupinus plants have been used for heart stimulants, nerves, urinary tract infections, skin disorders, and psoriasis in folk medicine. This review aims to recap the traditional medicinal uses, nutritional value, phytochemical profile, and biological activities of Lupinus species. KEY FINDINGS From the literature survey, Lupinus is considered as a factory of various phytochemicals like flavonoids, iso-flavonoids, alkaloids, triterpenoids. The presence of proteins, essential fatty acids, and amino acids, as well as alkaloids, minerals, and dietary fibers, indicated that the plants in this genus had a high nutritional value. The Lupinus extracts displayed promising antidiabetic, anticancer, antimicrobial, antidiabetic, antihypertensive, antioxidant, anti-inflammatory, and antimicrobial activities. CONCLUSIONS The current review provides updated information that could drive the researchers for further studies. The in vitro and in vivo experiments have demonstrated various pharmacological properties. Some pharmacokinetic and toxicological investigations are warranted to ensure its safety and validity for human use.
Collapse
Affiliation(s)
- Ali Raza Ishaq
- Department of Zoology, Government College University Faisalabad, 38000 Punjab, Pakistan.,State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, 430062 Wuhan, China
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Tahira Younis
- Department of Zoology, Government College University Faisalabad, 38000 Punjab, Pakistan
| | - Muhammad Asad Mangat
- Department of Zoology, Government College University Faisalabad, 38000 Punjab, Pakistan
| | - Mashal Shahzadi
- Department of Zoology, Government College University Faisalabad, 38000 Punjab, Pakistan
| | | | - Mohamed El-Shazly
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.,Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| |
Collapse
|
7
|
Duarte CM, Mota J, Assunção R, Martins C, Ribeiro AC, Lima A, Raymundo A, Nunes MC, Ferreira RB, Sousa I. New Alternatives to Milk From Pulses: Chickpea and Lupin Beverages With Improved Digestibility and Potential Bioactivities for Human Health. Front Nutr 2022; 9:852907. [PMID: 35911116 PMCID: PMC9333060 DOI: 10.3389/fnut.2022.852907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
There is a strong demand for plant-based milk substitutes, often low in protein content (<1.5% w/v). Protein-rich pulse seeds and the right processing technologies make it possible to make relevant choices. The major objective of this study was to assess the impact of processing on the nutritional characteristics of beverages with a high impact on health, in particular on digestibility and specific bioactivities. The results suggest that pulse beverages are as high in protein content (3.24% w/v for chickpea and 4.05% w/v for lupin) as cow’s milk. The anti-nutrient level characteristics of pulses have been considerably reduced by strategic processing. However, when present in small quantities, some of these anti-nutritional factors may have health benefits. Controlling processing conditions play a crucial role in this fine balance as a tool to take advantage of their health benefits. There is evidence of protein hydrolysis by in vitro digestion and limited bioaccessibility of minerals. In addition to being highly digestible, lupin and chickpea beverages have anti-inflammatory and anti-carcinogenic potential evaluated through the inhibition of metalloproteinase MMP-9.
Collapse
Affiliation(s)
- Carla Margarida Duarte
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Joana Mota
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Ricardo Assunção
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, Costa da Caparica, Portugal
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Carla Martins
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Center, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Cristina Ribeiro
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- Faculdade de Farmácia de Lisboa, University of Lisbon, Lisbon, Portugal
| | - Ana Lima
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Anabela Raymundo
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Maria Cristiana Nunes
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Ricardo Boavida Ferreira
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Isabel Sousa
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- *Correspondence: Isabel Sousa,
| |
Collapse
|
8
|
Mota J, Casimiro S, Fernandes J, Hartmann RM, Schemitt E, Picada J, Costa L, Marroni N, Raymundo A, Lima A, Ferreira RB. Lupin Protein Concentrate as a Novel Functional Food Additive That Can Reduce Colitis-Induced Inflammation and Oxidative Stress. Nutrients 2022; 14:2102. [PMID: 35631241 PMCID: PMC9143369 DOI: 10.3390/nu14102102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Food fortification with bioactive compounds may constitute a way to ameliorate inflammatory bowel diseases (IBDs). Lupin seeds contain an oligomer named deflamin that can reduce IBD’s symptoms via MMP-9 inhibition. Here, our goal was to develop a lupin protein concentrate (LPC) enriched in deflamin and to test its application as a food additive to be used as a functional food against colitis. The nutritional profile of the LPC was evaluated, and its efficacy in vivo was tested, either alone or as added to wheat cookies. The LPC presented high protein and carbohydrate contents (20.09 g/100 g and 62.05/100 g, respectively), as well as antioxidant activity (FRAP: 351.19 mg AAE/10 mg and DPPH: 273.9 mg AAE/10 mg). It was also effective against TNBS-induced colitis in a dose dependent-manner, reducing DAI scores by more than 50% and concomitantly inhibiting MMP-9 activity. When added to cookies, the LPC activities were maintained after baking, and a 4-day diet with LPC cookies induced a significant protective effect against acetic acid-induced colitis, overall bringing lesions, oxidative stress and DNA damage levels to values significantly similar to controls (p < 0.001). The results show that the LPC is an efficient way to deliver deflamin in IBD-targeted diets.
Collapse
Affiliation(s)
- Joana Mota
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Sandra Casimiro
- Clinical and Translational Oncology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (S.C.); (L.C.)
| | - João Fernandes
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
| | - Renata M. Hartmann
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040-060, Brazil; (R.M.H.); (E.S.); (N.M.)
| | - Elizângela Schemitt
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040-060, Brazil; (R.M.H.); (E.S.); (N.M.)
| | - Jaqueline Picada
- Genetic Toxicologic Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil;
| | - Luís Costa
- Clinical and Translational Oncology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (S.C.); (L.C.)
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal
| | - Norma Marroni
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040-060, Brazil; (R.M.H.); (E.S.); (N.M.)
| | - Anabela Raymundo
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
| | - Ana Lima
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Ricardo Boavida Ferreira
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
| |
Collapse
|