1
|
Roy ME, Veilleux C, Paquin A, Gagnon A, Annabi B. Transcriptional regulation of CYR61 and CTGF by LM98: a synthetic YAP-TEAD inhibitor that targets in-vitro vasculogenic mimicry in glioblastoma cells. Anticancer Drugs 2024; 35:709-719. [PMID: 38900643 PMCID: PMC11305628 DOI: 10.1097/cad.0000000000001627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
Glioblastoma (GBM) is a highly angiogenic malignancy of the central nervous system that resists standard antiangiogenic therapy, in part because of an alternative process to angiogenesis termed vasculogenic mimicry. Intricately linked to GBM, dysregulation of the Hippo signaling pathway leads to overexpression of YAP/TEAD and several downstream effectors involved in therapy resistance. Little is known about whether vasculogenic mimicry and the Hippo pathway intersect in the GBM chemoresistance phenotype. This study seeks to investigate the expression patterns of Hippo pathway regulators within clinically annotated GBM samples, examining their involvement in vitro regarding vasculogenic mimicry. In addition, it aims to assess the potential for pharmacological targeting of this pathway. In-silico analysis of the Hippo signaling members YAP1 , TEAD1 , AXL , NF2 , CTGF , and CYR61 transcript levels in low-grade GBM and GBM tumor tissues was done by Gene Expression Profiling Interactive Analysis. Gene expression was analyzed by real-time quantitative PCR from human U87, U118, U138, and U251 brain cancer cell lines and in clinically annotated brain tumor cDNA arrays. Transient gene silencing was performed with specific small interfering RNA. Vasculogenic mimicry was assessed using a Cultrex matrix, and three-dimensional capillary-like structures were analyzed with Wimasis. CYR61 and CTGF transcript levels were elevated in GBM tissues and were further induced when in-vitro vasculogenic mimicry was assessed. Silencing of CYR61 and CTGF , or treatment with a small-molecule TEAD inhibitor LM98 derived from flufenamic acid, inhibited vasculogenic mimicry. Silencing of SNAI1 and FOXC2 also altered vasculogenic mimicry and reduced CYR61 / CTGF levels. Pharmacological targeting of the Hippo pathway inhibits in-vitro vasculogenic mimicry. Unraveling the connections between the Hippo pathway and vasculogenic mimicry may pave the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Alexis Paquin
- Laboratoire de Chimie Organique et Médicinale, Département de Chimie, Université du Québec à Montréal, Montreal, Québec, Canada
| | - Alexandre Gagnon
- Laboratoire de Chimie Organique et Médicinale, Département de Chimie, Université du Québec à Montréal, Montreal, Québec, Canada
| | | |
Collapse
|
2
|
Otani Y, Katayama H, Zhu Y, Huang R, Shigehira T, Shien K, Suzawa K, Yamamoto H, Shien T, Toyooka S, Fujimura A. Adrenergic microenvironment driven by cancer-associated Schwann cells contributes to chemoresistance in patients with lung cancer. Cancer Sci 2024; 115:2333-2345. [PMID: 38676373 PMCID: PMC11247558 DOI: 10.1111/cas.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
Doublecortin (DCX)-positive neural progenitor-like cells are purported components of the cancer microenvironment. The number of DCX-positive cells in tissues reportedly correlates with cancer progression; however, little is known about the mechanism by which these cells affect cancer progression. Here we demonstrated that DCX-positive cells, which are found in all major histological subtypes of lung cancer, are cancer-associated Schwann cells (CAS) and contribute to the chemoresistance of lung cancer cells by establishing an adrenergic microenvironment. Mechanistically, the activation of the Hippo transducer YAP/TAZ was involved in the acquisition of new traits of CAS and DCX positivity. We further revealed that CAS express catecholamine-synthesizing enzymes and synthesize adrenaline, which potentiates the chemoresistance of lung cancer cells through the activation of YAP/TAZ. Our findings shed light on CAS, which drive the formation of an adrenergic microenvironment by the reciprocal regulation of YAP/TAZ in lung cancer tissues.
Collapse
Affiliation(s)
- Yusuke Otani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Haruyoshi Katayama
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Yidan Zhu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Rongsheng Huang
- Department of Trauma Orthopedics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Takafumi Shigehira
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Tadahiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Atsushi Fujimura
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Neutron Therapy Research Center, Okayama University, Kita-ku, Okayama, Japan
| |
Collapse
|
3
|
Dixon S, O'connor AT, Brooks-Noreiga C, Clark MA, Levy A, Castejon AM. Role of renin angiotensin system inhibitors and metformin in Glioblastoma Therapy: a review. Cancer Chemother Pharmacol 2024; 94:1-23. [PMID: 38914751 DOI: 10.1007/s00280-024-04686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and incurable disease accounting for about 10,000 deaths in the USA each year. Despite the current treatment approach which includes surgery with chemotherapy and radiation therapy, there remains a high prevalence of recurrence. Notable improvements have been observed in persons receiving concurrent antihypertensive drugs such as renin angiotensin inhibitors (RAS) or the antidiabetic drug metformin with standard therapy. Anti-tumoral effects of RAS inhibitors and metformin have been observed in in vitro and in vivo studies. Although clinical trials have shown mixed results, the potential for the use of RAS inhibitors and metformin as adjuvant GBM therapy remains promising. Nevertheless, evidence suggest that these drugs exert multimodal antitumor actions; by particularly targeting several cancer hallmarks. In this review, we highlight the results of clinical studies using multidrug cocktails containing RAS inhibitors and or metformin added to standard therapy for GBM. In addition, we highlight the possible molecular mechanisms by which these repurposed drugs with an excellent safety profile might elicit their anti-tumoral effects. RAS inhibition elicits anti-inflammatory, anti-angiogenic, and immune sensitivity effects in GBM. However, metformin promotes anti-migratory, anti-proliferative and pro-apoptotic effects mainly through the activation of AMP-activated protein kinase. Also, we discussed metformin's potential in targeting both GBM cells as well as GBM associated-stem cells. Finally, we summarize a few drug interactions that may cause an additive or antagonistic effect that may lead to adverse effects and influence treatment outcome.
Collapse
Affiliation(s)
- Sashana Dixon
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA.
| | - Ann Tenneil O'connor
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Chloe Brooks-Noreiga
- Halmos College of Arts and Sciences, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Michelle A Clark
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Arkene Levy
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Ana M Castejon
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| |
Collapse
|
4
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Li B, Liu Y, Chen D, Sun S. Comprehensive Analysis of Predictive Value and the potential therapeutic target of NLRP3 inflammasome in glioma based on tumor microenvironment. Clin Immunol 2024; 261:109918. [PMID: 38307475 DOI: 10.1016/j.clim.2024.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Glioma exhibits high recurrence rates and poor prognosis. The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in inflammation. There is a lack of research exploring the NLRP3 in glioma. METHODS We used several databases, networks, Western blotting, multiple immunofluorescence staining to analyze the role of NLRP3 in inflammatory tumor microenvironment (TME). RESULTS NLRP3 is higher-expression in glioma with a low mutation load. NLRP3 expression is linked to the infiltration of immune cells, chemokines, immunomodulators, and the TME. Signaling pathways, co-expression genes and interacting proteins contribute to the up-regulation of NLRP3. Patients responding to immunotherapy positively tend to have lower NLRP3 expression relating to the overall survival based on nomogram. Sensitivity to molecular medicines is observed in relation to NLRP3. CONCLUSION The NLRP3 inflammasome plays a pivotal role in TME which could serve as a higher predictive value biomarker and therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Bihan Li
- Nanjing municipal center for disease control and prevention, Nanjing, Jiangsu, China; Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin, China.
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin, China.
| | - Dawei Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
6
|
Lu X, Xie Y, Ding G, Sun W, Ye H. RBM24 Suppresses the Tumorigenesis of Glioblastoma by Stabilizing LATS1 mRNA. Biochem Genet 2024:10.1007/s10528-024-10715-7. [PMID: 38499965 DOI: 10.1007/s10528-024-10715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024]
Abstract
The ribose nucleic acid (RNA)-binding motif protein 24 (RBM24) has been recognized as a critical regulatory protein in various types of tumors. However, its specific role in glioblastoma (GBM) has not been thoroughly investigated. The objective of this study is to uncover the role of RBM24 in GBM and understand the underlying mechanism. The expression of RBM24 in GBM was initially analyzed using the Gene Expression Profiling Interactive Analysis (GEPIA). Subsequently, the RBM24 expression levels in clinical samples of GBM were examined, and the survival curves of GBM patients were plotted based on high- and low-expression levels of RBM24 using Kaplan-Meier (KM) plotter. In addition, RBM24 knockdown cell lines and overexpression vectors were created to assess the effects on proliferation, apoptosis, and invasion abilities. Finally, the binding level of RBM24 protein to LATS1 messenger RNA (mRNA) was determined by RNA immunoprecipitation (RIP) assay, and the expression levels of RBM24 and LATS1 were measured through quantitative reverse-transcriptase-polymerase chain reaction (qRT-PCR) and Western blot (WB). Our data revealed a significant decrease in RBM24 mRNA and protein levels in GBM patients, indicating that those with low RBM24 expression had a worse prognosis. Overexpression of RBM24 led to inhibited cell proliferation, reduced invasion, and increased apoptosis in LN229 and U87 cells. In addition, knocking down LATS1 partially reversed the effects of RBM24 on cell proliferation, invasion, and apoptosis in GBM cells. In vivo xenograft model further demonstrated that RBM24 overexpression reduced the growth of subcutaneous tumors in nude mice, accompanied by a decrease in Ki-67 expression and an increase in apoptotic events in tumor tissues. There was also correlation between RBM24 and LATS1 protein expression in the xenograft tumors. RBM24 functions to stabilize LATS1 mRNA, thereby inhibiting the proliferation, suppressing invasion, and promoting apoptosis in GBM cells.
Collapse
Affiliation(s)
- Xuewen Lu
- Department of Neurosurgery, The First People's Hospital of Qujing, No.1 Garden Road, Qilin District, Qujing, Yunnan, China
| | - Yong Xie
- Department of Neurosurgery, The First People's Hospital of Qujing, No.1 Garden Road, Qilin District, Qujing, Yunnan, China
| | - Guolin Ding
- Department of Neurosurgery, The First People's Hospital of Qujing, No.1 Garden Road, Qilin District, Qujing, Yunnan, China
| | - Wei Sun
- Department of Neurosurgery, Qujing Hospital of Traditional Chinese Medicine, No.771, Yingxia Road, Qilin District, Qujing, Yunnan, China
| | - Hao Ye
- Department of Neurosurgery, The First People's Hospital of Qujing, No.1 Garden Road, Qilin District, Qujing, Yunnan, China.
| |
Collapse
|
7
|
Lofiego MF, Piazzini F, Caruso FP, Marzani F, Solmonese L, Bello E, Celesti F, Costa MC, Noviello T, Mortarini R, Anichini A, Ceccarelli M, Coral S, Di Giacomo AM, Maio M, Covre A. Epigenetic remodeling to improve the efficacy of immunotherapy in human glioblastoma: pre-clinical evidence for development of new immunotherapy approaches. J Transl Med 2024; 22:223. [PMID: 38429759 PMCID: PMC10908027 DOI: 10.1186/s12967-024-05040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/24/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor, that is refractory to standard treatment and to immunotherapy with immune-checkpoint inhibitors (ICI). Noteworthy, melanoma brain metastases (MM-BM), that share the same niche as GBM, frequently respond to current ICI therapies. Epigenetic modifications regulate GBM cellular proliferation, invasion, and prognosis and may negatively regulate the cross-talk between malignant cells and immune cells in the tumor milieu, likely contributing to limit the efficacy of ICI therapy of GBM. Thus, manipulating the tumor epigenome can be considered a therapeutic opportunity in GBM. METHODS Microarray transcriptional and methylation profiles, followed by gene set enrichment and IPA analyses, were performed to study the differences in the constitutive expression profiles of GBM vs MM-BM cells, compared to the extracranial MM cells and to investigate the modulatory effects of the DNA hypomethylating agent (DHA) guadecitabine among the different tumor cells. The prognostic relevance of DHA-modulated genes was tested by Cox analysis in a TCGA GBM patients' cohort. RESULTS The most striking differences between GBM and MM-BM cells were found to be the enrichment of biological processes associated with tumor growth, invasion, and extravasation with the inhibition of MHC class II antigen processing/presentation in GBM cells. Treatment with guadecitabine reduced these biological differences, shaping GBM cells towards a more immunogenic phenotype. Indeed, in GBM cells, promoter hypomethylation by guadecitabine led to the up-regulation of genes mainly associated with activation, proliferation, and migration of T and B cells and with MHC class II antigen processing/presentation. Among DHA-modulated genes in GBM, 7.6% showed a significant prognostic relevance. Moreover, a large set of immune-related upstream-regulators (URs) were commonly modulated by DHA in GBM, MM-BM, and MM cells: DHA-activated URs enriched for biological processes mainly involved in the regulation of cytokines and chemokines production, inflammatory response, and in Type I/II/III IFN-mediated signaling; conversely, DHA-inhibited URs were involved in metabolic and proliferative pathways. CONCLUSIONS Epigenetic remodeling by guadecitabine represents a promising strategy to increase the efficacy of cancer immunotherapy of GBM, supporting the rationale to develop new epigenetic-based immunotherapeutic approaches for the treatment of this still highly deadly disease.
Collapse
Affiliation(s)
| | | | - Francesca Pia Caruso
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | | | - Laura Solmonese
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | | | | | - Maria Claudia Costa
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | - Teresa Noviello
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Ceccarelli
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Anna Maria Di Giacomo
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | - Michele Maio
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | | |
Collapse
|
8
|
van der Meulen M, Ramos RC, Voisin MR, Patil V, Wei Q, Singh O, Climans SA, Kalidindi N, Or R, Aldape K, Diamandis P, Munoz DG, Zadeh G, Mason WP. Differences in methylation profiles between long-term survivors and short-term survivors of IDH-wild-type glioblastoma. Neurooncol Adv 2024; 6:vdae001. [PMID: 38312227 PMCID: PMC10838123 DOI: 10.1093/noajnl/vdae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Background Patients with glioblastoma (GBM) have a median overall survival (OS) of approximately 16 months. However, approximately 5% of patients survive >5 years. This study examines the differences in methylation profiles between long-term survivors (>5 years, LTS) and short-term survivors (<1 year, STS) with isocitrate dehydrogenase (IDH)-wild-type GBMs. Methods In a multicenter retrospective analysis, we identified 25 LTS with a histologically confirmed GBM. They were age- and sex-matched to an STS. The methylation profiles of all 50 samples were analyzed with EPIC 850k, classified according to the DKFZ methylation classifier, and the methylation profiles of LTS versus STS were compared. Results After methylation profiling, 16/25 LTS and 23/25 STS were confirmed to be IDH-wild-type GBMs, all with +7/-10 signature. LTS had significantly increased O6-methylguanine methyltransferase (MGMT) promoter methylation and higher prevalence of FGFR3-TACC3 fusion (P = .03). STS were more likely to exhibit CDKN2A/B loss (P = .01) and higher frequency of NF1 (P = .02) mutation. There were no significant CpGs identified between LTS versus STS at an adjusted P-value of .05. Unadjusted analyses identified key pathways involved in both LTS and STS. The most common pathways were the Hippo signaling pathway and the Wnt pathway in LTS, and GPCR ligand binding and cell-cell signaling in STS. Conclusions A small group of patients with IDH-wild-type GBM survive more than 5 years. While there are few differences in the global methylation profiles of LTS compared to STS, our study highlights potential pathways involved in GBMs with a good or poor prognosis.
Collapse
Affiliation(s)
- Matthijs van der Meulen
- Department of Medicine, Divisions of Neurology and Medical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Neurology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Ronald C Ramos
- Department of Medicine, Divisions of Neurology and Medical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mathew R Voisin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Vikas Patil
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Qingxia Wei
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Olivia Singh
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Seth A Climans
- Department of Medicine, Divisions of Neurology and Medical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Oncology, London Regional Cancer Program, London, Ontario, Canada
| | - Navya Kalidindi
- Division of Neurology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rosemarylin Or
- Department of Neurology, The Medical City, Pasig, Philippines
| | - Ken Aldape
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Phedias Diamandis
- Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David G Munoz
- Department of Laboratory Medicine, St. Michaels Hospital, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Warren P Mason
- Department of Medicine, Divisions of Neurology and Medical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Huang ZL, Abdallah AS, Shen GX, Suarez M, Feng P, Yu YJ, Wang Y, Zheng SH, Hu YJ, Xiao X, Liu Y, Liu SR, Chen ZP, Li XN, Xia YF. Silencing GMPPB Inhibits the Proliferation and Invasion of GBM via Hippo/MMP3 Pathways. Int J Mol Sci 2023; 24:14707. [PMID: 37834154 PMCID: PMC10572784 DOI: 10.3390/ijms241914707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignancy and represents the most common brain tumor in adults. To better understand its biology for new and effective therapies, we examined the role of GDP-mannose pyrophosphorylase B (GMPPB), a key unit of the GDP-mannose pyrophosphorylase (GDP-MP) that catalyzes the formation of GDP-mannose. Impaired GMPPB function will reduce the amount of GDP-mannose available for O-mannosylation. Abnormal O-mannosylation of alpha dystroglycan (α-DG) has been reported to be involved in cancer metastasis and arenavirus entry. Here, we found that GMPPB is highly expressed in a panel of GBM cell lines and clinical samples and that expression of GMPPB is positively correlated with the WHO grade of gliomas. Additionally, expression of GMPPB was negatively correlated with the prognosis of GBM patients. We demonstrate that silencing GMPPB inhibits the proliferation, migration, and invasion of GBM cells both in vitro and in vivo and that overexpression of GMPPB exhibits the opposite effects. Consequently, targeting GMPPB in GBM cells results in impaired GBM tumor growth and invasion. Finally, we identify that the Hippo/MMP3 axis is essential for GMPPB-promoted GBM aggressiveness. These findings indicate that GMPPB represents a potential novel target for GBM treatment.
Collapse
Affiliation(s)
- Zi-Lu Huang
- State Key Laboratory of Oncology in Southern China, Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China or (Z.-L.H.); (P.F.); (Y.W.); (S.-H.Z.); (Y.-J.H.); (X.X.); (Y.L.)
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (A.S.A.); (M.S.)
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aalaa Sanad Abdallah
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (A.S.A.); (M.S.)
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Guang-Xin Shen
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 528031, China;
| | - Milagros Suarez
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (A.S.A.); (M.S.)
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ping Feng
- State Key Laboratory of Oncology in Southern China, Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China or (Z.-L.H.); (P.F.); (Y.W.); (S.-H.Z.); (Y.-J.H.); (X.X.); (Y.L.)
| | - Yan-Jiao Yu
- State Key Laboratory of Oncology in Southern China, Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (Y.-J.Y.); (Z.-P.C.)
| | - Ying Wang
- State Key Laboratory of Oncology in Southern China, Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China or (Z.-L.H.); (P.F.); (Y.W.); (S.-H.Z.); (Y.-J.H.); (X.X.); (Y.L.)
| | - Shuo-Han Zheng
- State Key Laboratory of Oncology in Southern China, Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China or (Z.-L.H.); (P.F.); (Y.W.); (S.-H.Z.); (Y.-J.H.); (X.X.); (Y.L.)
| | - Yu-Jun Hu
- State Key Laboratory of Oncology in Southern China, Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China or (Z.-L.H.); (P.F.); (Y.W.); (S.-H.Z.); (Y.-J.H.); (X.X.); (Y.L.)
| | - Xiang Xiao
- State Key Laboratory of Oncology in Southern China, Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China or (Z.-L.H.); (P.F.); (Y.W.); (S.-H.Z.); (Y.-J.H.); (X.X.); (Y.L.)
| | - Ya Liu
- State Key Laboratory of Oncology in Southern China, Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China or (Z.-L.H.); (P.F.); (Y.W.); (S.-H.Z.); (Y.-J.H.); (X.X.); (Y.L.)
| | - Song-Ran Liu
- State Key Laboratory of Oncology in Southern China, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China;
| | - Zhong-Ping Chen
- State Key Laboratory of Oncology in Southern China, Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (Y.-J.Y.); (Z.-P.C.)
| | - Xiao-Nan Li
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; (A.S.A.); (M.S.)
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yun-Fei Xia
- State Key Laboratory of Oncology in Southern China, Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China or (Z.-L.H.); (P.F.); (Y.W.); (S.-H.Z.); (Y.-J.H.); (X.X.); (Y.L.)
| |
Collapse
|
10
|
Zhang H, Chen Y, Liu X, Deng H. Multi-Omics Analyses Reveal Mitochondrial Dysfunction Contributing to Temozolomide Resistance in Glioblastoma Cells. Biomolecules 2023; 13:1408. [PMID: 37759808 PMCID: PMC10526285 DOI: 10.3390/biom13091408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor with poor prognosis. Temozolomide (TMZ) is the standard chemotherapy for glioblastoma treatment, but TMZ resistance significantly compromises its efficacy. In the present study, we generated a TMZ-resistant cell line and identified that mitochondrial dysfunction was a novel factor contributing to TMZ resistance though multi-omics analyses and energy metabolism analysis. Furthermore, we found that rotenone treatment induced TMZ resistance to a certain level in glioblastoma cells. Notably, we further demonstrated that elevated Ca2+ levels and JNK-STAT3 pathway activation contributed to TMZ resistance and that inhibiting JNK or STAT3 increases susceptibility to TMZ. Taken together, our results indicate that co-administering TMZ with a JNK or STAT3 inhibitor holds promise as a potentially effective treatment for glioblastoma.
Collapse
Affiliation(s)
| | | | | | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (H.Z.); (Y.C.); (X.L.)
| |
Collapse
|
11
|
Wahab R, Hasan MM, Azam Z, Grippo PJ, Al-Hilal TA. The role of coagulome in the tumor immune microenvironment. Adv Drug Deliv Rev 2023; 200:115027. [PMID: 37517779 PMCID: PMC11099942 DOI: 10.1016/j.addr.2023.115027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
The rising incidence and persistent thrombosis in multiple cancers including those that are immunosuppressive highlight the need for understanding the tumor coagulome system and its role beyond hemostatic complications. Immunotherapy has shown significant benefits in solid organ tumors but has been disappointing in the treatment of hypercoagulable cancers, such as glioblastoma and pancreatic ductal adenocarcinomas. Thus, targeting thrombosis to prevent immunosuppression seems a clinically viable approach in cancer treatment. Hypercoagulable tumors often develop fibrin clots within the tumor microenvironment (TME) that dictates the biophysical characteristics of the tumor tissue. The application of systems biology and single-cell approaches highlight the potential role of coagulome or thrombocytosis in shaping the tumor immune microenvironment (TIME). In-depth knowledge of the tumor coagulome would provide unprecedented opportunities to better predict the hemostatic complications, explore how thrombotic stroma modulates tumor immunity, reexamine the significance of clinical biomarkers, and enable steering the stromal versus systemic immune response for boosting the effectiveness of immune checkpoint inhibitors in cancer treatment. We focus on the role of coagulation factors in priming a suppressive TIME and the huge potential of existing anticoagulant drugs in the clinical settings of cancer immunotherapy.
Collapse
Affiliation(s)
- Riajul Wahab
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Mahedi Hasan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zulfikar Azam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Paul J Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
12
|
Mokhtari RB, Ashayeri N, Baghaie L, Sambi M, Satari K, Baluch N, Bosykh DA, Szewczuk MR, Chakraborty S. The Hippo Pathway Effectors YAP/TAZ-TEAD Oncoproteins as Emerging Therapeutic Targets in the Tumor Microenvironment. Cancers (Basel) 2023; 15:3468. [PMID: 37444578 DOI: 10.3390/cancers15133468] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Various cancer cell-associated intrinsic and extrinsic inputs act on YAP/TAZ proteins to mediate the hyperactivation of the TEAD transcription factor-based transcriptome. This YAP/TAZ-TEAD activity can override the growth-limiting Hippo tumor-suppressor pathway that maintains normal tissue homeostasis. Herein, we provide an integrated summary of the contrasting roles of YAP/TAZ during normal tissue homeostasis versus tumor initiation and progression. In addition to upstream factors that regulate YAP/TAZ in the TME, critical insights on the emerging functions of YAP/TAZ in immune suppression and abnormal vasculature development during tumorigenesis are illustrated. Lastly, we discuss the current methods that intervene with the YAP/TAZ-TEAD oncogenic signaling pathway and the emerging applications of combination therapies, gut microbiota, and epigenetic plasticity that could potentiate the efficacy of chemo/immunotherapy as improved cancer therapeutic strategies.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Neda Ashayeri
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kosar Satari
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
13
|
Park J, Sim J, Ahn J, Kim YJ, Hwang S, Cho K, Chang DY, Jung JH, Moon JH, Sung K, Lim J. Molecular characteristics of incidental lower-grade glioma for treatment decision-making. J Neurosurg 2023; 138:629-638. [PMID: 35986732 DOI: 10.3171/2022.6.jns22967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Several limitations are associated with the early diagnosis and treatment of incidental lower-grade glioma (iLGG), and due to its unknown molecular features, its management is categorized as either the "wait-and-see" strategy or immediate treatment. Therefore, in this study the authors explored iLGG's clinical and molecular landscape to improve its management. METHODS The authors retrospectively assessed the differences between the molecular and clinical characteristics of iLGG and symptomatic lower-grade glioma (sLGG) samples filtered based on symptom data corresponding to The Cancer Genome Atlas cohort with mutations. Thereafter, genomic and transcriptomic analysis was performed. RESULTS There was no significant difference between iLGG and sLGG with respect to mutation status; however, there was an increase in the interaction between major mutations in sLGG, depending on the histological subtype and the IDH1 mutation status. Furthermore, the IDH1 mutation characteristics corresponding to wild-type glioma were much more obvious in sLGG than in iLGG. Additionally, in sLGG, genes associated with malignancy, including cell proliferation-related, cell migration-related, epithelial-to-mesenchymal transition-related, and negative regulation of cell death-related genes, were significantly upregulated, and groups showing higher expression levels of these genes were associated with worse prognosis. Also, 8 of the 75 identified upregulated genes showed positive correlation with resistance to the drugs that are normally used for glioma treatment, including procarbazine, carmustine, vincristine, and temozolomide. CONCLUSIONS The new insights regarding the different molecular features of iLGG and sLGG indicated that the immediate management of iLGG could result in better prognosis than the wait-and-see strategy.
Collapse
Affiliation(s)
- Jeongman Park
- 1Department of Neurosurgery, Bundang CHA Medical Center, CHA University, Seongnam
| | - Jeongmin Sim
- 1Department of Neurosurgery, Bundang CHA Medical Center, CHA University, Seongnam
| | - Juwon Ahn
- 1Department of Neurosurgery, Bundang CHA Medical Center, CHA University, Seongnam
| | - Yu Jin Kim
- 1Department of Neurosurgery, Bundang CHA Medical Center, CHA University, Seongnam
| | - Sojung Hwang
- 2Global Research Supporting Center, Bundang CHA Medical Center, CHA University, Seongnam
| | - Kyunggi Cho
- 1Department of Neurosurgery, Bundang CHA Medical Center, CHA University, Seongnam
| | | | | | - Ju Hyung Moon
- 4Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul; and
| | - KyoungSu Sung
- 5Department of Neurosurgery, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Korea
| | - Jaejoon Lim
- 1Department of Neurosurgery, Bundang CHA Medical Center, CHA University, Seongnam
| |
Collapse
|
14
|
Tu M, Zuo Z, Chen C, Zhang X, Wang S, Chen C, Sun Y. Transfer RNA-derived small RNAs (tsRNAs) sequencing revealed a differential expression landscape of tsRNAs between glioblastoma and low-grade glioma. Gene X 2023; 855:147114. [PMID: 36526122 DOI: 10.1016/j.gene.2022.147114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glioblastomas (GBMs) are the most lethal brain cancer with a median survival rate of fewer than 15 months. Both clinical and biological features of GBMs are largely different from those of low-grade gliomas (LGs), but the reasons for this intratumoral heterogeneity are not entirely clear. Transfer RNA (tRNA)-derived small RNAs (tsRNAs) were derived from tRNA precursors and mature tRNA, referring to the specific cleavage of tRNAs by dicer and angiogenin (ANG) in particular cells or tissues or under certain conditions such as stress and hypoxia. With the characteristics of wide expression and high stability, tsRNAs could be used as favorable biomarkers for diagnosis, treatment, and prognosis prediction of the tumor, viral infection, neurological as well as other systemic diseases. In this study, we have compared the differential expressed tsRNAs between GBMs and LGs, so as to investigate the possible pathogenic molecules and provide references for discovering novel nucleic acid drugs in future studies. METHODS Fresh tumor tissues of patients that were diagnosed as GBMs (4 cases) and LGs (5 cases) at the First Affiliated Hospital of Wenzhou Medical University from 2019.05 to 2021.01 were collected. The tsRNAs' levels were analyzed and compared through high-throughput sequencing, candidate tsRNAs were chosen according to the expression level, and the expression of the candidate tsRNAs was validated through qPCR. Finally, the potential targets were imputed using the Miranda and TargetScan databases, and possible biological functions of the differentially expressed (DE) tsRNAs' targets were enriched based on GO and KEGG databases. RESULTS A total of 4 GBMs and 5 LGs patients were enrolled in the current study. High-throughput sequencing showed that 186 tsRNAs were expressed in two groups, over them, 43 tsRNAs were unique to GBMs, and 24 tsRNAs were unique to LGs. A total of 9 tsRNAs were selected as candidate tsRNAs according to the tsRNA expression level, among which 6 tsRNAs were highly expressed in GBMs and 3 tsRNAs were low expressed in GBMs. qPCR verification further demonstrated that 5 tsRNAs were significantly up-regulated and 1 tsRNA was significantly down-regulated in GBMs: tRF-1-32-chrM.Lys-TTT (p=0.00118), tiRNA-1-33-Gly-GCC-1 (p=0.00203), tiRNA-1-33-Gly-CCC-1 (p=0.00460), tRF-1-31-His-GTG-1 (p=0.00819), tiRNA-1-33-Gly-GCC-2-M3 (p=0.01032), and tiRNA-1-34-Lys-CTT-1-M2 (p=0.03569). Enrichment analysis of the qPCR verified DE tsRNAs showed that the 5 up-regulated tsRNAs seemed to be associated with axon guidance, pluripotent stem cells regulation, nucleotide excision repair, Hippo signaling pathway, and cancer-related pathways, while the down-regulated tsRNA (tRF-1-32-chrM.Lys-TTT) was associated with oocyte meiosis and renin secretion. CONCLUSION The tsRNAs were differentially expressed in tumor tissues between GBMs and LGs, especially tRF-1-32-chrM.Lys-TTT, tiRNA-1-33-Gly-GCC-1, tiRNA-1-33-Gly-CCC-1, tRF-1-31-His-GTG-1, tiRNA-1-33-Gly-GCC-2-M3, and tiRNA-1-34-Lys-CTT-1-M2. These tsRNAs seemed to be associated with nucleotide excision repair, Hippo signaling, and cancer-related pathways. This may be the main reason for the differences in clinical characteristics between GBMs and LGs, which may provide a certain theoretical basis for further functional research and development of related nucleic acid drugs. CONCLUSION The tsRNAs were differentially expressed in tumor tissues between GBMs and LGs, especially tRF-1-32-chrM.Lys-TTT, tiRNA-1-33-Gly-GCC-1, tiRNA-1-33-Gly-CCC-1, tRF-1-31-His-GTG-1, tiRNA-1-33-Gly-GCC-2-M3, and tiRNA-1-34-Lys-CTT-1-M2. These tsRNAs seemed to be associated with nucleotide excision repair, Hippo signaling, and cancer-related pathways. This may be the main reason for the differences in clinical characteristics between GBMs and LGs, which may provide a certain theoretical basis for further functional research and development of related nucleic acid drugs.
Collapse
Affiliation(s)
- Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, Zhejiang, China
| | - Ziyi Zuo
- The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, Zhejiang, China
| | - Cuie Chen
- Department of Pediatrics, Yiwu Maternity and Children Hospital, No. C100 Xinke Road, Yiwu, Jinhua, Zhejiang, China
| | - Xixi Zhang
- Department of Pediatrics, The People' s Hospital of Yuhuan, Taizhou, Zhejiang, China
| | - Shi Wang
- Department of Anesthesiology, Women' s Hospital School of Medicine Zhejiang University, No.1 Xueshi Road, Shangcheng district, Hangzhou, Zhejiang, China
| | - Changwei Chen
- Department of Pediatrics, The People' s Hospital of Yuhuan, Taizhou, Zhejiang, China
| | - Yuanyuan Sun
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Editorial to Special Issue "Glioblastoma: Recapitulating the Key Breakthroughs and Future Perspective". Int J Mol Sci 2023; 24:ijms24032548. [PMID: 36768870 PMCID: PMC9917091 DOI: 10.3390/ijms24032548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma (GBM) remains the most common and aggressive malignant primary brain tumor [...].
Collapse
|
16
|
Wang H, Min J, Xu C, Liu Y, Yu Z, Gong A, Xu M. Hypoxia-elicited Exosomes Promote the Chemoresistance of Pancreatic Cancer Cells by Transferring LncROR via Hippo Signaling. J Cancer 2023; 14:1075-1087. [PMID: 37151398 PMCID: PMC10158512 DOI: 10.7150/jca.81320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/25/2023] [Indexed: 05/09/2023] Open
Abstract
Recent studies have found that hypoxia contributes to tumor progression and drug resistance by inducing the secretion of exosomes. However, the mechanism underlying this resistance in pancreatic cancer remains to be explored. In this study, we investigated the effect of hypoxia-induced tumor-derived exosomes (Hexo) on stemness and resistance to gemcitabine in pancreatic cancer cells, as well as the molecular mechanisms involved in this process. Firstly, we discovered that hypoxia promoted stemness and induced resistance to gemcitabine in pancreatic cancer cells. Secondly, we showed that exosomes secreted by pancreatic cancer cells under normoxic or hypoxic conditions can be transfected into tumor cells. Thirdly, it was demonstrated that Hexo promotes proliferation, stemness, and resistance to gemcitabine in pancreatic cancer cells, as well as inhibits the apoptosis and cell cycle arrest induced by gemcitabine. Finally, it was verified that Hexo inactivated the Hippo/Yes-associated protein (Hippo/YAP) pathway in pancreatic cancer cells by transferring exosomal long non-coding RNA regulator of reprogramming (lncROR). In summary, the hypoxic tumor microenvironment could promote stemness and induce resistance to gemcitabine in pancreatic cancer cells. Mechanistically, Hexo enhanced stemness to promote chemoresistance in pancreatic cancer cells by transferring lncROR via Hippo signaling. Thus, exosomal lncROR may serve as a candidate target of chemotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Jingyu Min
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
- Department of Gastroenterology, Changshu No.2 People's Hospital, 68 Haiyu South Road, Changshu 215500, China
| | - Chunhui Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Yawen Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Zhengyue Yu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- ✉ Corresponding author: Aihua Gong, Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu, Zhenjiang, China 212013. Tel: +86-13775369530; . Min Xu, Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China 212001. Tel: +86-15862990603;
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
- ✉ Corresponding author: Aihua Gong, Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu, Zhenjiang, China 212013. Tel: +86-13775369530; . Min Xu, Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China 212001. Tel: +86-15862990603;
| |
Collapse
|
17
|
FOXP3 Contributes to TMZ Resistance, Prognosis, and Immune Infiltration in GBM from a Novel Pyroptosis-Associated Risk Signature. DISEASE MARKERS 2022; 2022:4534080. [PMID: 35401877 PMCID: PMC8993549 DOI: 10.1155/2022/4534080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022]
Abstract
Background Pyroptosis is a form of programmed cell death, playing a significant role in cancer. Glioblastoma multiforme (GBM) is the most common malignant brain tumor. The poor prognosis in GBM due to temozolomide (TMZ) resistance has been widely discussed. Such being the case, the correlation between TMZ resistance and pyroptosis is seldom investigated. On this basis, this paper aims to explore the potential prognostic value of genes related to TMZ resistance and pyroptosis as well as their relationship to the immune microenvironment in GBM. Methods A total of 103 patients from TCGA were assigned to a training cohort; 190 from CGGA were assigned to a validation cohort. The prognostic risk model reflecting pyroptosis and TMZ resistance was built from the training cohort using multivariate Cox regression and performed validation. RT-qPCR was used to examine the expression of 4 genes from the risk signature. FOXP3 was selected for overexpression and verified using the western blot. The TMZ IC50 of FOXP3-overexpressed cell lines was determined by CCK8. Results A four genes-based risk signature was established and validated, separating GBM patients into high- and low-risk groups. Compared with the low-risk group, the high-risk group presented worse clinical survival outcomes. Its differential expressed genes were enriched in immune-related pathways and closely related to the immune microenvironment. Moreover, RT-qPCR results suggested that FOXP3, IRF3, and CD274 were significantly upregulated in TMZ-resistant strains, while TP63 was downregulated. FOXP3-overexpressed GBM cell lines had higher TMZ IC50, implying an increased resistance of TMZ. Conclusion A novel gene signature relevant to pyroptosis and TMZ resistance was constructed and could be used for the prognosis of GBM. The four genes from the risk model might play a potential role in antitumor immunity and serve as therapeutic targets for GBM.
Collapse
|