1
|
Cao T, Zhou J, Liu Q, Mao T, Chen B, Wu Q, Wang L, Pathak JL, Watanabe N, Li J. Interferon-γ induces salivary gland epithelial cell ferroptosis in Sjogren's syndrome via JAK/STAT1-mediated inhibition of system Xc . Free Radic Biol Med 2023; 205:116-128. [PMID: 37286044 DOI: 10.1016/j.freeradbiomed.2023.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
The elevated level of interferon-γ (IFN-γ) in Sjogren's syndrome (SS) triggers salivary gland epithelial cells (SGEC) death. However, the underlying mechanisms of IFN-γ-induced SGEC death modes are still not fully elucidated. We found that IFN-γ triggers SGEC ferroptosis via Janus kinase/signal transducer and activator of transcription 1 (JAK/STAT1)-mediated inhibition of cystine-glutamate exchanger (System Xc-). Transcriptome analysis revealed that ferroptosis-related markers are differentially expressed in SS human and mouse salivary glands with distinct upregulation of IFN-γ and downregulation of glutathione peroxidase 4 (GPX4) and aquaporin 5 (AQP5). Inducing ferroptosis or IFN-γ treatment in the Institute of cancer research (ICR) mice aggravated and inhibition of ferroptosis or IFN-γ signaling in SS model non-obese diabetic (NOD) mice alleviated ferroptosis in the salivary gland and SS symptoms. IFN-γ activated STAT1 phosphorylation and downregulated system Xc- components solute carrier family 3 member 2 (SLC3A2), glutathione, and GPX4 thereby triggering ferroptosis in SGEC. JAK or STAT1 inhibition in SGEC rescued IFN-γ-downregulated SLC3A2 and GPX4 as well as IFN-γ-induced cell death. Our results indicate the role of ferroptosis in SS-related death of SGEC and SS pathogenicity.
Collapse
Affiliation(s)
- Tingting Cao
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jiannan Zhou
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Qianwen Liu
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Tianjiao Mao
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Bo Chen
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Qingqing Wu
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Lijing Wang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Janak L Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| | - Nobumoto Watanabe
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan; Bio-Active Compounds Discovery Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Jiang Li
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
2
|
D’Agostino C, Parisis D, Chivasso C, Hajiabbas M, Soyfoo MS, Delporte C. Aquaporin-5 Dynamic Regulation. Int J Mol Sci 2023; 24:ijms24031889. [PMID: 36768212 PMCID: PMC9915196 DOI: 10.3390/ijms24031889] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Aquaporin-5 (AQP5), belonging to the aquaporins (AQPs) family of transmembrane water channels, facilitates osmotically driven water flux across biological membranes and the movement of hydrogen peroxide and CO2. Various mechanisms have been shown to dynamically regulate AQP5 expression, trafficking, and function. Besides fulfilling its primary water permeability function, AQP5 has been shown to regulate downstream effectors playing roles in various cellular processes. This review provides a comprehensive overview of the current knowledge of the upstream and downstream effectors of AQP5 to gain an in-depth understanding of the physiological and pathophysiological processes involving AQP5.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Dorian Parisis
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad Shahnawaz Soyfoo
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Correspondence:
| |
Collapse
|
3
|
Xiong M, Li C, Wang W, Yang B. Protein Structure and Modification of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:15-38. [PMID: 36717484 DOI: 10.1007/978-981-19-7415-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) allow water molecules and other small, neutral solutes to quickly pass through membrane. The protein structures of AQPs solved by crystallographic methods or cryo-electron microscopy technology show that AQP monomer consists of six membrane-spanning alpha-helices that form the central water-transporting pore. AQP monomers assemble to form tetramers, forming the functional units in the membrane, to transport water or other small molecules. The biological functions of AQPs are regulated by posttranslational modifications, e.g., phosphorylation, ubiquitination, glycosylation, subcellular distribution, degradation and protein interactions. Modifications of AQP combined with structural properties contribute to a better functional mechanism of AQPs. Insight into the molecular mechanisms responsible for AQP modifications as well as gating and transport properties proved to be fundamental to the development of new therapeutic targets or reliable diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Mengyao Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chunling Li
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
4
|
Fertitta L, Charbit-Henrion F, Leclerc-Mercier S, Nguyen-Khoa T, Baran R, Alby C, Steffann J, Sermet-Gaudelus I, Hadj-Rabia S. Bothnian Palmoplantar Keratoderma: Further Delineation of the Associated Phenotype. Genes (Basel) 2022; 13:2360. [PMID: 36553627 PMCID: PMC9777635 DOI: 10.3390/genes13122360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Bothnian palmoplantar keratoderma (PPKB, MIM600231) is an autosomal dominant form of diffuse non-epidermolytic PPK characterized by spontaneous yellowish-white PPK associated with a spongy appearance after water-immersion. It is due to AQP5 heterozygous mutations. We report four patients carrying a novel AQP5 heterozygous mutation (c.125T>A; p.(Ile42Asn)), and belonging to the same French family. Early palmoplantar swelling (before one year of age), pruritus and hyperhidrosis were constant. The PPK was finally characterized as transgrediens, non-progrediens, diffuse PPK with a clear delineation between normal and affected skin. The cutaneous modifications at water-immersion test, "hand-in-the-bucket sign", were significantly evident after 3 to 6 min of immersion in the children and father, respectively. AQP5 protein is expressed in eccrine sweat glands (ESG), salivary and airway submucosal glands. In PPKB, gain of function mutations seem to widen the channel diameter of ESG and increase water movement. Thus, swelling seems to be induced by hypotonicity with water entrance into cells, while hyperhidrosis is the result of an increased cytosolic calcium concentration.
Collapse
Affiliation(s)
- Laura Fertitta
- Department of Dermatology, Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 149 rue de Sèvres—75743 PARIS, CEDEX 15, 75679 Paris, France
- Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 75015 Paris, France
| | - Fabienne Charbit-Henrion
- INSERM U1163, Institut Imagine, Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France
- Genomic Medecine Unit, Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 75015 Paris, France
| | - Stéphanie Leclerc-Mercier
- Department of Pathology, Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 75015 Paris, France
| | - Thao Nguyen-Khoa
- Laboratory of Biochemistry, Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 75015 Paris, France
- Reference Center for Rare Diseases: Cystic Fibrosis and Other Epithelial Respiratory Protein Misfolding Diseases, Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 75015 Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Université Paris Cité, 75015 Paris, France
| | | | - Caroline Alby
- Genomic Medecine Unit, Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 75015 Paris, France
| | - Julie Steffann
- INSERM U1163, Institut Imagine, Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France
- Genomic Medecine Unit, Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 75015 Paris, France
| | - Isabelle Sermet-Gaudelus
- Reference Center for Rare Diseases: Cystic Fibrosis and Other Epithelial Respiratory Protein Misfolding Diseases, Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 75015 Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Université Paris Cité, 75015 Paris, France
| | - Smail Hadj-Rabia
- Department of Dermatology, Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 149 rue de Sèvres—75743 PARIS, CEDEX 15, 75679 Paris, France
- Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 75015 Paris, France
- INSERM U1163, Institut Imagine, Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France
| |
Collapse
|
5
|
Antequera D, Carrero L, Cunha Alves V, Ferrer I, Hernández-Gallego J, Municio C, Carro E. Differentially Aquaporin 5 Expression in Submandibular Glands and Cerebral Cortex in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10071645. [PMID: 35884950 PMCID: PMC9312791 DOI: 10.3390/biomedicines10071645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
Impaired brain clearance mechanisms may result in the accumulation of aberrant proteins that define Alzheimer’s disease (AD). The water channel protein astrocytic aquaporin 4 (AQP4) is essential for brain amyloid-β clearance, but it is known to be abnormally expressed in AD brains. The expression of AQPs is differentially regulated during diverse brain injuries, but, whereas AQP4 expression and function have been studied in AD, less is known about AQP5. AQP5 functions include not only water transport but also cell migration mediated by cytoskeleton regulation. Moreover, AQP5 has been reported to be expressed in astrocytes, which are regulated after ischemic and traumatic injury. Additionally, AQP5 is particularly abundant in the salivary glands suggesting that it may be a crucial factor in gland dysfunction associated with AD. Herein, we aim to determine whether AQP5 expression in submandibular glands and the brain was altered in AD. First, we demonstrated impaired AQP5 expression in submandibular glands in APP/PS1 mice and AD patients. Subsequently, we observed that AQP5 expression was upregulated in APP/PS1 cerebral cortex and confirmed its expression both in astrocytes and neurons. Our findings propose AQP5 as a significant role player in AD pathology, in addition to AQP4, representing a potential target for the treatment of AD.
Collapse
Affiliation(s)
- Desiree Antequera
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; (D.A.); (L.C.); (V.C.A.); (J.H.-G.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28031 Madrid, Spain;
| | - Laura Carrero
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; (D.A.); (L.C.); (V.C.A.); (J.H.-G.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28031 Madrid, Spain;
| | - Victoria Cunha Alves
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; (D.A.); (L.C.); (V.C.A.); (J.H.-G.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28031 Madrid, Spain;
| | - Isidro Ferrer
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28031 Madrid, Spain;
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08907 Hospitalet de Llobregat, Spain
- Institute of Neurosciences, University of Barcelona, 08035 Barcelona, Spain
| | - Jesús Hernández-Gallego
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; (D.A.); (L.C.); (V.C.A.); (J.H.-G.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28031 Madrid, Spain;
- Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Cristina Municio
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; (D.A.); (L.C.); (V.C.A.); (J.H.-G.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28031 Madrid, Spain;
- Correspondence: (C.M.); (E.C.); Tel.: +34-918223995 (C.M.); +34-918223995 (E.C.)
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28031 Madrid, Spain;
- Neurobiology of Alzheimer’s Disease Unit, Chronic Disease Programme, Instituto de Salud Carlos III, 28222 Majadahonda, Spain
- Correspondence: (C.M.); (E.C.); Tel.: +34-918223995 (C.M.); +34-918223995 (E.C.)
| |
Collapse
|