1
|
Lemos RP, Rodrigues JT, Portwood G, de Oliveira LC, Gomes Dos Santos PH, Costa MAF, Pereira HD, Bleicher L, de Magalhães MTQ. Evolution-based protein engineering: functional switching between transthyretins and 5-hydroxyisourate hydrolases. J Biomol Struct Dyn 2024:1-17. [PMID: 39705024 DOI: 10.1080/07391102.2024.2440647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/07/2024] [Indexed: 12/21/2024]
Abstract
Transthyretin (TTR) is a vertebrate-exclusive transport protein that plays a key role in binding and distributing thyroid hormones. However, its evolutionary origin lies in the duplication of the gene that encoding the enzyme 5-hydroxyisourate hydrolase (HIUase), which is involved in uric acid metabolism. Unlike TTR, HIUase is ubiquitous in both prokaryotes and eukaryotes, with the exception of hominids. Both HIUase and TTR subfamilies form homotetramers, possessing an internal charged cavity between the two dimer pairs. Based on their high degree of structural similarity, we hypothesized that specific in silico substitutions would enable the interconversion between these protein functions. Using an evolution-based approach, we engineered two putative protein sequences, where correlated locally conserved positions from one subfamily representative sequence were substituted by the other, and vice versa. Applying computational modeling techniques, the best models were refined, validated, and their cavity volumes, three-dimensional geometries, propensity to aggregation and electrostatic potentials were analyzed. Molecular dynamics simulations were performed with the reference proteins and the engineered mutants in the bound and unbound states. We demonstrate that the volumes and geometries differ from one another, due to size and physicochemical differences between their ligands. The bound state mutant complexes are stable, and the enzymatic assay demonstrated active new enzymes. Our work suggests that the evolution-based protein engineering approach used has residue-specific resolution to identify locally conserved residues in the sequence of evolutionarily related proteins, such as HIUase and TTR.
Collapse
Affiliation(s)
- Rafael Pereira Lemos
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Julia T Rodrigues
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Portwood
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Carrijo de Oliveira
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Mariana Amália Figueiredo Costa
- Biochemistry and Immunology Postgraduate Program, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Lucas Bleicher
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Biochemistry and Immunology Postgraduate Program, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mariana T Q de Magalhães
- Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Biochemistry and Immunology Postgraduate Program, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Almeida ZL, Vaz DC, Brito RMM. Transthyretin mutagenesis: impact on amyloidogenesis and disease. Crit Rev Clin Lab Sci 2024; 61:616-640. [PMID: 38850014 DOI: 10.1080/10408363.2024.2350379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Transthyretin (TTR), a homotetrameric protein found in plasma, cerebrospinal fluid, and the eye, plays a pivotal role in the onset of several amyloid diseases with high morbidity and mortality. Protein aggregation and fibril formation by wild-type TTR and its natural more amyloidogenic variants are hallmarks of ATTRwt and ATTRv amyloidosis, respectively. The formation of soluble amyloid aggregates and the accumulation of insoluble amyloid fibrils and deposits in multiple tissues can lead to organ dysfunction and cell death. The most frequent manifestations of ATTR are polyneuropathies and cardiomyopathies. However, clinical manifestations such as carpal tunnel syndrome, leptomeningeal, and ocular amyloidosis, among several others may also occur. This review provides an up-to-date listing of all single amino-acid mutations in TTR known to date. Of approximately 220 single-point mutations, 93% are considered pathogenic. Aspartic acid is the residue mutated with the highest frequency, whereas tryptophan is highly conserved. "Hot spot" mutation regions are mainly assigned to β-strands B, C, and D. This manuscript also reviews the protein aggregation models that have been proposed for TTR amyloid fibril formation and the transient conformational states that convert native TTR into aggregation-prone molecular species. Finally, it compiles the various in vitro TTR aggregation protocols currently in use for research and drug development purposes. In short, this article reviews and discusses TTR mutagenesis and amyloidogenesis, and their implications in disease onset.
Collapse
Affiliation(s)
- Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
- School of Health Sciences, Polytechnic Institute of Leiria, Leiria, Portugal
- LSRE-LCM - Leiria, Portugal & ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Pilotte J, Huang AS, Khoury S, Zhang X, Tafreshi A, Vanderklish P, Sarraf ST, Pulido JS, Milman T. Detection of TTR Amyloid in the Conjunctiva Using a Novel Fluorescent Ocular Tracer. Transl Vis Sci Technol 2024; 13:11. [PMID: 38359019 PMCID: PMC10876017 DOI: 10.1167/tvst.13.2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/15/2023] [Indexed: 02/17/2024] Open
Abstract
Background Transthyretin amyloidosis (ATTR) is a significant cause of cardiomyopathy and other morbidities in the elderly and Black Americans. ATTR can be treated with new disease-modifying therapies, but large shortfalls exist in its diagnosis. The objective of this study was to test whether TTR amyloid can be detected and imaged in the conjunctiva using a novel small-molecule fluorescent ocular tracer, with the implication that ATTR might be diagnosable by a simple eye examination. Methods Three approaches were used in this study. First, AMDX-9101 was incubated with in vitro aggregated TTR protein, and changes in its excitation and emission spectra were quantified. Second, a cadaver eye from a patient with familial amyloid polyneuropathy type II TTR mutation and a vitrectomy sample from an hATTR patient were incubated with AMDX-9101 and counterstained with Congo Red and antibodies to TTR to determine whether AMDX-9101 labels disease-related TTR amyloid deposits in human conjunctiva and eye. Last, imaging of in vitro aggregated TTR amyloid labeled with AMDX-9101 was tested in a porcine ex vivo model, using a widely available clinical ophthalmic imaging device. Results AMDX-9101 hyper-fluoresced in the presence of TTR amyloid in vitro, labeled TTR amyloid deposits in postmortem human conjunctiva and other ocular tissues and could be detected under the conjunctiva of a porcine eye using commercially available ophthalmic imaging equipment. Conclusions AMDX-9101 enabled detection of TTR amyloid in the conjunctiva, and the fluorescent binding signal can be visualized using commercially available ophthalmic imaging equipment. Translational Relevance AMDX-9101 detection of TTR amyloid may provide a potential new and noninvasive test for ATTR that could lead to earlier ATTR diagnosis, as well as facilitate development of new therapeutics.
Collapse
Affiliation(s)
| | - Alex S. Huang
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | | | - Xiaowei Zhang
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Jose S. Pulido
- Vickie and Jack Farber Vision Research Center and MidAtlantic Retina Service, Wills Eye Hospital, Philadelphia, PA, USA
| | - Tatyana Milman
- Vickie and Jack Farber Vision Research Center and MidAtlantic Retina Service, Wills Eye Hospital, Philadelphia, PA, USA
- Pathology Department, Wills Eye Hospital, Philadelphia, PA, USA
| |
Collapse
|
4
|
Parrales-Macias V, Michel PP, Tourville A, Raisman-Vozari R, Haïk S, Hunot S, Bizat N, Lannuzel A. The Pesticide Chlordecone Promotes Parkinsonism-like Neurodegeneration with Tau Lesions in Midbrain Cultures and C. elegans Worms. Cells 2023; 12:cells12091336. [PMID: 37174736 PMCID: PMC10177284 DOI: 10.3390/cells12091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Chlordecone (CLD) is an organochlorine pesticide (OCP) that is currently banned but still contaminates ecosystems in the French Caribbean. Because OCPs are known to increase the risk of Parkinson's disease (PD), we tested whether chronic low-level intoxication with CLD could reproduce certain key characteristics of Parkinsonism-like neurodegeneration. For that, we used culture systems of mouse midbrain dopamine (DA) neurons and glial cells, together with the nematode C. elegans as an in vivo model organism. We established that CLD kills cultured DA neurons in a concentration- and time-dependent manner while exerting no direct proinflammatory effects on glial cells. DA cell loss was not impacted by the degree of maturation of the culture. The use of fluorogenic probes revealed that CLD neurotoxicity was the consequence of oxidative stress-mediated insults and mitochondrial disturbances. In C. elegans worms, CLD exposure caused a progressive loss of DA neurons associated with locomotor deficits secondary to alterations in food perception. L-DOPA, a molecule used for PD treatment, corrected these deficits. Cholinergic and serotoninergic neuronal cells were also affected by CLD in C. elegans, although to a lesser extent than DA neurons. Noticeably, CLD also promoted the phosphorylation of the aggregation-prone protein tau (but not of α-synuclein) both in midbrain cell cultures and in a transgenic C. elegans strain expressing a human form of tau in neurons. In summary, our data suggest that CLD is more likely to promote atypical forms of Parkinsonism characterized by tau pathology than classical synucleinopathy-associated PD.
Collapse
Affiliation(s)
- Valeria Parrales-Macias
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Patrick P Michel
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Aurore Tourville
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Rita Raisman-Vozari
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stéphane Haïk
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stéphane Hunot
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Nicolas Bizat
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
- Faculté de Pharmacie de Paris, Université de Paris Cité, 75006 Paris, France
| | - Annie Lannuzel
- Paris Brain Institute-ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013 Paris, France
- Centre Hospitalier Universitaire de la Guadeloupe, Service de Neurologie, Faculté de Médecine de l'Université des Antilles, Centre d'Investigation Clinique (CIC) 1424, 97159 Pointe-à-Pitre, France
| |
Collapse
|
5
|
Almeida ZL, Brito RMM. Amyloid Disassembly: What Can We Learn from Chaperones? Biomedicines 2022; 10:3276. [PMID: 36552032 PMCID: PMC9776232 DOI: 10.3390/biomedicines10123276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/23/2022] Open
Abstract
Protein aggregation and subsequent accumulation of insoluble amyloid fibrils with cross-β structure is an intrinsic characteristic of amyloid diseases, i.e., amyloidoses. Amyloid formation involves a series of on-pathway and off-pathway protein aggregation events, leading to mature insoluble fibrils that eventually accumulate in multiple tissues. In this cascade of events, soluble oligomeric species are formed, which are among the most cytotoxic molecular entities along the amyloid cascade. The direct or indirect action of these amyloid soluble oligomers and amyloid protofibrils and fibrils in several tissues and organs lead to cell death in some cases and organ disfunction in general. There are dozens of different proteins and peptides causing multiple amyloid pathologies, chief among them Alzheimer's, Parkinson's, Huntington's, and several other neurodegenerative diseases. Amyloid fibril disassembly is among the disease-modifying therapeutic strategies being pursued to overcome amyloid pathologies. The clearance of preformed amyloids and consequently the arresting of the progression of organ deterioration may increase patient survival and quality of life. In this review, we compiled from the literature many examples of chemical and biochemical agents able to disaggregate preformed amyloids, which have been classified as molecular chaperones, chemical chaperones, and pharmacological chaperones. We focused on their mode of action, chemical structure, interactions with the fibrillar structures, morphology and toxicity of the disaggregation products, and the potential use of disaggregation agents as a treatment option in amyloidosis.
Collapse
Affiliation(s)
| | - Rui M. M. Brito
- Chemistry Department and Coimbra Chemistry Centre—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
6
|
Matsushita H, Fukunari A, Sameshima G, Okada M, Inoue F, Ueda M, Ando Y. Suppression of amyloid fibril formation by UV irradiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|