1
|
Naef V, Damiani D, Licitra R, Marchese M, Vecchia SD, Baggiani M, Brogi L, Galatolo D, Landi S, Santorelli FM. Modeling sacsin depletion in Danio Rerio offers new insight on retinal defects in ARSACS. Neurobiol Dis 2025:106793. [PMID: 39778749 DOI: 10.1016/j.nbd.2025.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/17/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025] Open
Abstract
Biallelic mutations in the SACS gene, encoding sacsin, cause early-onset autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), a neurodegenerative disease also characterized by unique and poorly understood retinal abnormalities. While two murine models replicate the phenotypic and neuronal features observed in patients, no retinal phenotype has been described so far. In a zebrafish knock-out strain that faithfully mirrors the main aspects of ARSACS, we observed impaired visual function due to photoreceptor degeneration, likely caused by cell cycle defects in progenitor cells. RNA-seq analysis in embryos revealed dysfunction in proteins related to fat-soluble vitamins (e.g., TTPA, RDH5, VKORC) and suggested a key role of neuroinflammation in driving the retinal defects. Our findings indicate that studying retinal pathology in ARSACS could be crucial for understanding the impact of sacsin depletion and may offer insights into halting disease progression.
Collapse
Affiliation(s)
- Valentina Naef
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
| | - Devid Damiani
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Rosario Licitra
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Maria Marchese
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Stefania Della Vecchia
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Matteo Baggiani
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Letizia Brogi
- Bio@SNS, Department of Neurosciences, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Daniele Galatolo
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | | | - Filippo Maria Santorelli
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
| |
Collapse
|
2
|
Hosseinpour S, Bemanalizadeh M, Mohammadi P, Ashrafi MR, Heidari M. An overview of early-onset cerebellar ataxia: a practical guideline. Acta Neurol Belg 2024; 124:1791-1804. [PMID: 38951452 DOI: 10.1007/s13760-024-02595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
Early onset ataxias (EOAs) are a heterogeneous group of rare neurological disorders that not only involve the central and peripheral nervous system but also involve other organs. They are mainly manifested by degeneration or abnormal development of the cerebellum occurring before the age of 25 years and typically the pattern of inheritance is autosomal recessive.The diagnosis of autosomal recessive cerebellar ataxias (ARCAs) is confirmed by the clinical, laboratory, electrophysiological examination, neuroimaging findings, and mutation analysis when the causative gene is detected. Correct diagnosis is crucial for appropriate genetic counseling, estimating the prognosis, and, in some cases, pharmacological intervention. The wide variety of genotypes with a heterogeneous phenotypic manifestation makes the diagnostic work-up challenging, time-consuming, and expensive, not only for the clinician but also for the children and their parents. In this review, we focused on the step-by-step approach in which cerebellar ataxia is a prominent sign. We also outline the most common disorders in ataxias with early-onset manifestations.
Collapse
Affiliation(s)
- Sareh Hosseinpour
- Department of Pediatrics, Division of Pediatric Neurology, Vali-e-Asr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Maryam Bemanalizadeh
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouria Mohammadi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran.
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Morteza Heidari
- Department of Pediatrics, Division of Pediatric Neurology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran.
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chen C, Merrill RA, Jong CJ, Strack S. Driving Mitochondrial Fission Improves Cognitive, but not Motor Deficits in a Mouse Model of Ataxia of Charlevoix-Saguenay. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2042-2049. [PMID: 38735882 DOI: 10.1007/s12311-024-01701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bβ2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bβ2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.
Collapse
Affiliation(s)
- Chunling Chen
- Department of Neuroscience and Pharmacology, University of Iowa, Carver College of Medicine, Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Ronald A Merrill
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Chian Ju Jong
- Department of Neuroscience and Pharmacology, University of Iowa, Carver College of Medicine, Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa, Carver College of Medicine, Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, Intellectual and Developmental Disabilities Research Center, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Azeem A, Ahmed AN, Khan N, Voutsina N, Ullah I, Ubeyratna N, Yasin M, Baple EL, Crosby AH, Rawlins LE, Saleha S. Investigating the genetic basis of hereditary spastic paraplegia and cerebellar Ataxia in Pakistani families. BMC Neurol 2024; 24:354. [PMID: 39304850 DOI: 10.1186/s12883-024-03855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Hereditary Spastic Paraplegias (HSPs) and Hereditary Cerebellar Ataxias (HCAs) are progressive neurodegenerative disorders encompassing a spectrum of neurogenetic conditions with significant overlaps of clinical features. Spastic ataxias are a group of conditions that have features of both cerebellar ataxia and spasticity, and these conditions are frequently clinically challenging to distinguish. Accurate genetic diagnosis is crucial but challenging, particularly in resource-limited settings. This study aims to investigate the genetic basis of HSPs and HCAs in Pakistani families. METHODS Families from Khyber Pakhtunkhwa with at least two members showing HSP or HCA phenotypes, and who had not previously been analyzed genetically, were included. Families were referred for genetic analysis by local neurologists based on the proband's clinical features and signs of a potential genetic neurodegenerative disorder. Whole Exome Sequencing (WES) and Sanger sequencing were then used to identify and validate genetic variants, and to analyze variant segregation within families to determine inheritance patterns. The mean age of onset and standard deviation were calculated to assess variability among affected individuals, and the success rate was compared with literature reports using differences in proportions and Cohen's h. RESULTS Pathogenic variants associated with these conditions were identified in five of eight families, segregating according to autosomal recessive inheritance. These variants included previously reported SACS c.2182 C > T, p.(Arg728*), FA2H c.159_176del, p.(Arg53_Ile58del) and SPG11 c.2146 C > T, p.(Gln716*) variants, and two previously unreported variants in SACS c.2229del, p.(Phe743Leufs*8) and ZFYVE26 c.1926_1941del, p.(Tyr643Metfs*2). Additionally, FA2H and SPG11 variants were found to have recurrent occurrences, suggesting a potential founder effect within the Pakistani population. Onset age among affected individuals ranged from 1 to 14 years (M = 6.23, SD = 3.96). The diagnostic success rate was 62.5%, with moderate effect sizes compared to previous studies. CONCLUSIONS The findings of this study expand the genotypic and phenotypic spectrum of HSPs and HCAs in Pakistan and emphasize the importance of utilizing exome/genome sequencing for accurate diagnosis or support accurate differential diagnosis. This approach can improve genetic counseling and clinical management, addressing the challenges of diagnosing neurodegenerative disorders in resource-limited settings.
Collapse
Affiliation(s)
- Arfa Azeem
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Asif Naveed Ahmed
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Nikol Voutsina
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Irfan Ullah
- Department of Neurology, Khyber Teaching Hospital, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Nishanka Ubeyratna
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Emma L Baple
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Andrew H Crosby
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Lettie E Rawlins
- 2Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK.
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK.
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
5
|
Scaravilli A, Negroni D, Senatore C, Ugga L, Cosottini M, Ricca I, Bender B, Traschütz A, Başak AN, Vural A, van de Warrenburg BP, Durr A, La Piana R, Timmann D, Schüle R, Synofzik M, Santorelli FM, Cocozza S. MRI-ARSACS: An Imaging Index for Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) Identification Based on the Multicenter PROSPAX Study. Mov Disord 2024; 39:1343-1351. [PMID: 38847051 DOI: 10.1002/mds.29871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) and hereditary spastic paraplegia type 7 (SPG7) represent the most common genotypes of spastic ataxia (SPAX). To date, their magnetic resonance imaging (MRI) features have only been described qualitatively, and a pure neuroradiological differential diagnosis between these two conditions is difficult to achieve. OBJECTIVES To test the performance of MRI measures to discriminate between ARSACS and SPG7 (as an index of common SPAX disease). METHODS In this prospective multicenter study, 3D-T1-weighted images of 59 ARSACS (35.4 ± 10.3 years, M/F = 33/26) and 78 SPG7 (54.8 ± 10.3 years, M/F = 51/27) patients of the PROSPAX Consortium were analyzed, together with 30 controls (45.9 ± 16.9 years, M/F = 15/15). Different linear and surface measures were evaluated. A receiver operating characteristic analysis was performed, calculating area under the curve (AUC) and corresponding diagnostic accuracy parameters. RESULTS The pons area proved to be the only metric increased exclusively in ARSACS patients (P = 0.02). Other different measures were reduced in ARSACS and SPG7 compared with controls (all with P ≤ 0.005). A cut-off value equal to 1.67 of the pons-to-superior vermis area ratio proved to have the highest AUC (0.98, diagnostic accuracy 93%, sensitivity 97%) in discriminating between ARSACS and SPG7. CONCLUSIONS Evaluation of the pons-to-superior vermis area ratio can discriminate ARSACS from other SPAX patients, as exemplified here by SPG7. Hence, we hereby propose this ratio as the Magnetic Resonance Index for the Assessment and Recognition of patients harboring SACS mutations (MRI-ARSACS), a novel diagnostic tool able to identify ARSACS patients and useful for discriminating ARSACS from other SPAX patients undergoing MRI. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Davide Negroni
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Claudio Senatore
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Mirco Cosottini
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Ivana Ricca
- Department of Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Germany
| | - Andreas Traschütz
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ayşe Nazli Başak
- Translational Medicine Research Center, KUTTAM-NDAL, Koç University, Istanbul, Turkey
| | - Atay Vural
- Department of Neurology, Koç University, Istanbul, Turkey
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexandra Durr
- ICM, Inserm, CNRS, AP-HP, Paris Brain Institute, Sorbonne University, Paris, France
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Diagnostic Radiology, McGill University, Montreal, Quebec, Canada
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Rebecca Schüle
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Division of Neurodegenerative Diseases, Department of Neurology, Heidelberg University Hospital and Faculty of Medicine, Heidelberg, Germany
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
6
|
Chamova T, Ivanova N, Cherninkova S, Koleva M, Zlatareva D, Bojinova V, Mihova K, Georgiev M, Ferdinandov D, Bichev S, Kaneva R, Mitev V, Jordanova A, Tournev I. Clinical and genetic variability among Bulgarian patients with autosomal recessive spastic ataxia of Charlevoix-Saguenay. Mol Genet Genomic Med 2024; 12:e2483. [PMID: 39044368 PMCID: PMC11266115 DOI: 10.1002/mgg3.2483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Autosomal recessive spastic ataxia ofCharlevoix-Saguenay (ARSACS) is a rare neurodegenerative disorder characterizedby early-onset cerebellar ataxia, peripheral sensorimotor neuropathy, and lowerlimb spasticity. We present clinical andgenetic data of the first Bulgarian patients diagnosed with ARSACS by wholeexome sequencing (WES). METHODS Variant filtering was performed usinglocally established pipeline and the selected variants were analysed by Sangersequencing. All patients underwent clinical examination and testingincluding the standard rating scales for spastic paraplegia and ataxia. RESULTS Five different SACS gene variants, three of which novel, have been identified inpatients from three different ethnic groups. In addition to the classicalclinical triad, brain MRI revealed cerebellar atrophy, linear pontineT2-hypointensities, and hyperintense rim lateral tothalamus combined with retinal nerve fiber layer thickening on opticcoherence tomography (OCT). CONCLUSION We expand the mutation, geographic, and phenotypic spectrum of ARSACS, adding Bulgaria to the world map of the disease, and drawing attention to the fact that it is still misdiagnosed. We demonstrated that brain MRI and OCT are necessary clinical tests for ARSACS diagnosis, even if one of the cardinal clinical features is lacking.
Collapse
Affiliation(s)
- Teodora Chamova
- Department of NeurologyAlexandrovska University Hospital, Medical University—SofiaSofiaBulgaria
| | - Neviana Ivanova
- Department of Medical Chemistry and Biochemistry, Molecular Medicine CenterMedical University—SofiaSofiaBulgaria
| | - Sylvia Cherninkova
- Department of NeurologyAlexandrovska University Hospital, Medical University—SofiaSofiaBulgaria
| | - Maya Koleva
- Department of NeurologySt. Naum University Hospital, Medical University—SofiaSofiaBulgaria
| | - Dora Zlatareva
- Department of Diagnostic ImagingAlexandrovska University Hospital, Medical University—SofiaSofiaBulgaria
| | - Veneta Bojinova
- Department of NeurologySt. Naum University Hospital, Medical University—SofiaSofiaBulgaria
| | - Kalina Mihova
- Department of Medical Chemistry and Biochemistry, Molecular Medicine CenterMedical University—SofiaSofiaBulgaria
| | - Martin Georgiev
- Department of Medical Chemistry and Biochemistry, Molecular Medicine CenterMedical University—SofiaSofiaBulgaria
| | - Dilyan Ferdinandov
- Department of NeurosurgerySt. Ivan Rilski University Hospital, Medical University—SofiaSofiaBulgaria
| | - Stoyan Bichev
- National Genetics Laboratory, SBALAG Maichin DomSofiaBulgaria
| | - Radka Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine CenterMedical University—SofiaSofiaBulgaria
| | - Vanio Mitev
- Department of Medical Chemistry and Biochemistry, Molecular Medicine CenterMedical University—SofiaSofiaBulgaria
| | - Albena Jordanova
- Department of Medical Chemistry and Biochemistry, Molecular Medicine CenterMedical University—SofiaSofiaBulgaria
- VIB Department of Molecular Genetics, Molecular Neurogenomics GroupUniversity of AntwerpAntwerpenBelgium
| | - Ivailo Tournev
- Department of NeurologyAlexandrovska University Hospital, Medical University—SofiaSofiaBulgaria
- Department of Cognitive Science and PsychologyNew Bulgarian UniversitySofiaBulgaria
| |
Collapse
|
7
|
Sng KS, Sin YS, Alhawiti SMO. Jiao's style scalp acupuncture combined with physiotherapy for autosomal recessive spastic ataxia of Charlevoix-Saguenay type: A case report. Heliyon 2024; 10:e33046. [PMID: 39005899 PMCID: PMC11239588 DOI: 10.1016/j.heliyon.2024.e33046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
We present a case study of an 8-year-old girl with autosomal recessive spastic ataxia of Charlevoix-Saguenay, who experienced gait imbalance since the age of two. Magnetic resonance imaging of the brain and whole spine, as well as electroencephalography, revealed no abnormalities. However, genetic testing identified a likely pathogenic variant and an uncertain significance in the heterozygous state of the Sacsin Molecular Chaperone gene. Despite treatment with epileptic and antiparkinsonian medications, along with supplements, no significant improvements were observed. Subsequently, the patient underwent eight sessions of physiotherapy before starting with 14 sessions of combined Jiao's style scalp acupuncture targeting the motor and chorea-tremor areas with physiotherapy treatment. Positive changes were noted in the Trunk Control Measurement Scale (TCMS) and Pediatric Balance Scale (PBS) after three sessions of combined treatments from 25 to 36 and 21 to 43 respectively. Further combined treatments showed consistent improvements where the TCMS reached a peak of 57 out of 58 and PBS showed a peak of 54 out of 58 at the 6th month of combined treatment. This suggests that the combination of scalp acupuncture with physiotherapy treatment may provide improvement in the balance and gait of patients with ARSACS. More similar cases should be documented to better understand the potential benefits and synergies of both treatments of ARSACS.
Collapse
Affiliation(s)
- Kim Sia Sng
- Department of Chinese Medicine, School of Alternative and Complementary Medicine, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yen Suan Sin
- Department of Chinese Medicine, School of Alternative and Complementary Medicine, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Salma Musallam O Alhawiti
- Department of Chinese Medicine, School of Alternative and Complementary Medicine, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Pi BK, Chung YH, Kim HS, Nam SH, Lee AJ, Nam DE, Park HJ, Kim SB, Chung KW, Choi BO. Compound Heterozygous Mutations of SACS in a Korean Cohort Study of Charcot-Marie-Tooth Disease Concurrent Cerebellar Ataxia and Spasticity. Int J Mol Sci 2024; 25:6378. [PMID: 38928084 PMCID: PMC11204044 DOI: 10.3390/ijms25126378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Mutations in the SACS gene are associated with autosomal recessive spastic ataxia of Charlevoix-Saguenay disease (ARSACS) or complex clinical phenotypes of Charcot-Marie-Tooth disease (CMT). This study aimed to identify SACS mutations in a Korean CMT cohort with cerebellar ataxia and spasticity by whole exome sequencing (WES). As a result, eight pathogenic SACS mutations in four families were identified as the underlying causes of these complex phenotypes. The prevalence of CMT families with SACS mutations was determined to be 0.3%. All the patients showed sensory, motor, and gait disturbances with increased deep tendon reflexes. Lower limb magnetic resonance imaging (MRI) was performed in four patients and all had fatty replacements. Of note, they all had similar fatty infiltrations between the proximal and distal lower limb muscles, different from the neuromuscular imaging feature in most CMT patients without SACS mutations who had distal dominant fatty involvement. Therefore, these findings were considered a characteristic feature in CMT patients with SACS mutations. Although further studies with more cases are needed, our results highlight lower extremity MRI findings in CMT patients with SACS mutations and broaden the clinical spectrum. We suggest screening for SACS in recessive CMT patients with complex phenotypes of ataxia and spasticity.
Collapse
Affiliation(s)
- Byung Kwon Pi
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (B.K.P.); (A.J.L.)
| | - Yeon Hak Chung
- Department of Neurology, Korea University Guro Hospital, College of Medicine, Korea University, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea;
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea;
| | - Soo Hyun Nam
- Cell and Gene Therapy Institute, Samsung Medical Center, Gangnam-gu, Seoul 06351, Republic of Korea;
| | - Ah Jin Lee
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (B.K.P.); (A.J.L.)
| | - Da Eun Nam
- Department of Domestic Business, Macrogen, Inc., 238 Teheran-ro, Gangnam-gu, Seoul 06221, Republic of Korea;
| | - Hyung Jun Park
- Department of Neurology, Gangnam Severance Hospital, College of Medicine, Yonsei University, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Republic of Korea;
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea;
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (B.K.P.); (A.J.L.)
| | - Byung-Ok Choi
- Cell and Gene Therapy Institute, Samsung Medical Center, Gangnam-gu, Seoul 06351, Republic of Korea;
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwonr-ro, Gangnam-gu, Seoul 06351, Republic of Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
9
|
Cornman RS. A genomic hotspot of diversifying selection and structural change in the hoary bat ( Lasiurus cinereus). PeerJ 2024; 12:e17482. [PMID: 38832043 PMCID: PMC11146322 DOI: 10.7717/peerj.17482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Background Previous work found that numerous genes positively selected within the hoary bat (Lasiurus cinereus) lineage are physically clustered in regions of conserved synteny. Here I further validate and expand on those finding utilizing an updated L. cinereus genome assembly and additional bat species as well as other tetrapod outgroups. Methods A chromosome-level assembly was generated by chromatin-contact mapping and made available by DNAZoo (www.dnazoo.org). The genomic organization of orthologous genes was extracted from annotation data for multiple additional bat species as well as other tetrapod clades for which chromosome-level assemblies were available from the National Center for Biotechnology Information (NCBI). Tests of branch-specific positive selection were performed for L. cinereus using PAML as well as with the HyPhy package for comparison. Results Twelve genes exhibiting significant diversifying selection in the L. cinereus lineage were clustered within a 12-Mb genomic window; one of these (Trpc4) also exhibited diversifying selection in bats generally. Ten of the 12 genes are landmarks of two distinct blocks of ancient synteny that are not linked in other tetrapod clades. Bats are further distinguished by frequent structural rearrangements within these synteny blocks, which are rarely observed in other Tetrapoda. Patterns of gene order and orientation among bat taxa are incompatible with phylogeny as presently understood, implying parallel evolution or subsequent reversals. Inferences of positive selection were found to be robust to alternative phylogenetic topologies as well as a strong shift in background nucleotide composition in some taxa. Discussion This study confirms and further localizes a genomic hotspot of protein-coding divergence in the hoary bat, one that also exhibits an increased tempo of structural change in bats compared with other mammals. Most genes in the two synteny blocks have elevated expression in brain tissue in humans and model organisms, and genetic studies implicate the selected genes in cranial and neurological development, among other functions.
Collapse
Affiliation(s)
- Robert S. Cornman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States
| |
Collapse
|
10
|
Chen C, Merrill RA, Jong CJ, Strack S. Driving mitochondrial fission improves cognitive, but not motor deficits in a mouse model of Ataxia of Charlevoix-Saguenay. RESEARCH SQUARE 2024:rs.3.rs-4178088. [PMID: 38659734 PMCID: PMC11042405 DOI: 10.21203/rs.3.rs-4178088/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bβ2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bβ2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.
Collapse
|
11
|
Lessard I, Côté I, St-Gelais R, Hébert LJ, Brais B, Mathieu J, Rodrigue X, Gagnon C. Natural History of Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay: a 4-Year Longitudinal Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:489-501. [PMID: 37101017 DOI: 10.1007/s12311-023-01558-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurologic disorder with generally well-known clinical manifestations. However, few studies assessed their progression rate using a longitudinal design. This study aimed to document the natural history of ARSACS over a 4-year period in terms of upper and lower limb functions, balance, walking capacity, performance in daily living activities, and disease severity. Forty participants were assessed on three occasions over 4 years. Participant performance was reported in raw data as well as in percentage from reference values to consider the normal aging process. Severe balance and walking capacity impairments were found, with a significant performance decrease over the 4 years. Balance reached a floor score of around 6 points on the Berg Balance Scale for participants aged >40 years, while other participants lost about 1.5 points per year. The mean loss in walking speed was 0.044 m/s per year and the mean decrease in the distance walked in 6 min was 20.8 m per year for the whole cohort. Pinch strength, balance, walking speed, and walking distance decreased over time even when reported in percentage from reference values. Major impairments and rapid progression rates were documented in the present study for upper limb coordination, pinch strength, balance, and walking capacity in the ARSACS population. A progression rate beyond the normal aging process was observed. These results provide fundamental insights regarding the disease prognosis that will help to better inform patients, develop specific rehabilitation programs, and improve trial readiness.
Collapse
Affiliation(s)
- Isabelle Lessard
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Québec, Canada
| | - Isabelle Côté
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Québec, Canada
| | - Raphaël St-Gelais
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Québec, Canada
| | - Luc J Hébert
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Institut de réadaptation en déficience physique de Québec, Québec, Canada
- Départements de réadaptation et de radiologie et médecine nucléaire, Faculté de médecine, Université Laval, Québec, Canada
| | - Bernard Brais
- Neurological Institute, McGill University, Quebec, Canada
| | - Jean Mathieu
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Québec, Canada
| | - Xavier Rodrigue
- Institut de réadaptation en déficience physique de Québec, Québec, Canada
| | - Cynthia Gagnon
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Québec, Canada.
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec, Canada.
| |
Collapse
|
12
|
Diab R, Pilotto F, Saxena S. Autophagy and neurodegeneration: Unraveling the role of C9ORF72 in the regulation of autophagy and its relationship to ALS-FTD pathology. Front Cell Neurosci 2023; 17:1086895. [PMID: 37006471 PMCID: PMC10060823 DOI: 10.3389/fncel.2023.1086895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The proper functioning of the cell clearance machinery is critical for neuronal health within the central nervous system (CNS). In normal physiological conditions, the cell clearance machinery is actively involved in the elimination of misfolded and toxic proteins throughout the lifetime of an organism. The highly conserved and regulated pathway of autophagy is one of the important processes involved in preventing and neutralizing pathogenic buildup of toxic proteins that could eventually lead to the development of neurodegenerative diseases (NDs) such as Alzheimer’s disease or Amyotrophic lateral sclerosis (ALS). The most common genetic cause of ALS and frontotemporal dementia (FTD) is a hexanucleotide expansion consisting of GGGGCC (G4C2) repeats in the chromosome 9 open reading frame 72 gene (C9ORF72). These abnormally expanded repeats have been implicated in leading to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs). In this review, we discuss the normal physiological role of C9ORF72 in the autophagy-lysosome pathway (ALP), and present recent research deciphering how dysfunction of the ALP synergizes with C9ORF72 haploinsufficiency, which together with the gain of toxic mechanisms involving hexanucleotide repeat expansions and DPRs, drive the disease process. This review delves further into the interactions of C9ORF72 with RAB proteins involved in endosomal/lysosomal trafficking, and their role in regulating various steps in autophagy and lysosomal pathways. Lastly, the review aims to provide a framework for further investigations of neuronal autophagy in C9ORF72-linked ALS-FTD as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rim Diab
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Federica Pilotto
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- *Correspondence: Smita Saxena,
| |
Collapse
|
13
|
Louit A, Beaudet MJ, Blais M, Gros-Louis F, Dupré N, Berthod F. In Vitro Characterization of Motor Neurons and Purkinje Cells Differentiated from Induced Pluripotent Stem Cells Generated from Patients with Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay. Stem Cells Int 2023; 2023:1496597. [PMID: 37096129 PMCID: PMC10122584 DOI: 10.1155/2023/1496597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease mainly characterized by spasticity in the lower limbs and poor muscle control. The disease is caused by mutations in the SACS gene leading in most cases to a loss of function of the sacsin protein, which is highly expressed in motor neurons and Purkinje cells. To investigate the impact of the mutated sacsin protein in these cells in vitro, induced pluripotent stem cell- (iPSC-) derived motor neurons and iPSC-derived Purkinje cells were generated from three ARSACS patients. Both types of iPSC-derived neurons expressed the characteristic neuronal markers β3-tubulin, neurofilaments M and H, as well as specific markers like Islet-1 for motor neurons, and parvalbumin or calbindin for Purkinje cells. Compared to controls, iPSC-derived mutated SACS neurons expressed lower amounts of sacsin. In addition, characteristic neurofilament aggregates were detected along the neurites of both iPSC-derived neurons. These results indicate that it is possible to recapitulate in vitro, at least in part, the ARSACS pathological signature in vitro using patient-derived motor neurons and Purkinje cells differentiated from iPSCs. Such an in vitro personalized model of the disease could be useful for the screening of new drugs for the treatment of ARSACS.
Collapse
Affiliation(s)
- Aurélie Louit
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Marie-Josée Beaudet
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Mathieu Blais
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - François Gros-Louis
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Nicolas Dupré
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - François Berthod
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
14
|
Nanayakkara R, Gurung R, Rodgers SJ, Eramo MJ, Ramm G, Mitchell CA, McGrath MJ. Autophagic lysosome reformation in health and disease. Autophagy 2022:1-18. [DOI: 10.1080/15548627.2022.2128019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Randini Nanayakkara
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Rajendra Gurung
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Samuel J. Rodgers
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew J. Eramo
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Christina A. Mitchell
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Meagan J. McGrath
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Lan MY, Lu CS, Wu SL, Chen YF, Sung YF, Tu MC, Chang YY. Clinical and genetic characterization of a Taiwanese cohort with spastic paraparesis combined with cerebellar involvement. Front Neurol 2022; 13:1005670. [PMID: 36247768 PMCID: PMC9563621 DOI: 10.3389/fneur.2022.1005670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative disorders clinically characterized by progressive lower-limb spasticity. Cerebellar ataxia commonly co-occurs with complicated HSPs. HSP with concurrent cerebellar ataxia has significant clinical and genetic overlaps with hereditary cerebellar ataxia (HCA) and other inherited neurological diseases, adding to the challenge of planning genetic testing for the disease. In this study, we characterized clinical features of a cohort of 24 patients (male/female: 15/9) from 22 families who presented spastic paraparesis combined with cerebellar involvement, with a median disease onset age 20.5 (range 5–53) years. Aside from the core phenotype, 18 (75%) patients had additional neuropsychiatric and systemic manifestations. A stepwise genetic testing strategy stratified by mode of inheritance, distinct neuroimaging features (e.g., thin corpus callosum), population-specific prevalence and whole-exome sequencing was utilized to investigate the genetic etiology. Causative mutations in up to 10 genes traditionally related to HSP, HCA and other neurogenetic diseases (autosomal recessive spastic ataxia of Charlevoix-Saguenay, neurodegeneration with brain iron accumulation, and progressive encephalopathy with brain atrophy and thin corpus callosum) were detected in 16 (73%) of the 22 pedigrees. Our study revealed the genetic complexity of HSP combined with cerebellar involvement. In contrast to the marked genetic diversity, the functions of the causative genes are restricted to a limited number of physiological themes. The functional overlap might reflect common underlying pathogenic mechanisms, to which the corticospinal tract and cerebellar neuron circuits may be especially vulnerable.
Collapse
Affiliation(s)
- Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Song Lu
- Professor Lu Neurological Clinic, Taoyuan, Taiwan
- Department of Neurology, Landseed International Hospital, Taoyuan, Taiwan
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Electrical Engineering, National Changhua University of Education, Changhua, Taiwan
| | - Ying-Fa Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yueh-Feng Sung
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tu
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- *Correspondence: Yung-Yee Chang
| |
Collapse
|
16
|
Morani F, Doccini S, Galatolo D, Pezzini F, Soliymani R, Simonati A, Lalowski MM, Gemignani F, Santorelli FM. Integrative Organelle-Based Functional Proteomics: In Silico Prediction of Impaired Functional Annotations in SACS KO Cell Model. Biomolecules 2022; 12:biom12081024. [PMID: 35892334 PMCID: PMC9331974 DOI: 10.3390/biom12081024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/07/2023] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an inherited neurodegenerative disease characterized by early-onset spasticity in the lower limbs, axonal-demyelinating sensorimotor peripheral neuropathy, and cerebellar ataxia. Our understanding of ARSACS (genetic basis, protein function, and disease mechanisms) remains partial. The integrative use of organelle-based quantitative proteomics and whole-genome analysis proposed in the present study allowed identifying the affected disease-specific pathways, upstream regulators, and biological functions related to ARSACS, which exemplify a rationale for the development of improved early diagnostic strategies and alternative treatment options in this rare condition that currently lacks a cure. Our integrated results strengthen the evidence for disease-specific defects related to bioenergetics and protein quality control systems and reinforce the role of dysregulated cytoskeletal organization in the pathogenesis of ARSACS.
Collapse
Affiliation(s)
- Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (F.G.)
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit—IRCCS Stella Maris, 56128 Pisa, Italy; (S.D.); (D.G.)
| | - Daniele Galatolo
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit—IRCCS Stella Maris, 56128 Pisa, Italy; (S.D.); (D.G.)
| | - Francesco Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (F.P.); (A.S.)
| | - Rabah Soliymani
- HiLIFE, Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland; (R.S.); (M.M.L.)
| | - Alessandro Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (F.P.); (A.S.)
| | - Maciej M. Lalowski
- HiLIFE, Meilahti Clinical Proteomics Core Facility, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland; (R.S.); (M.M.L.)
- Institute of Bioorganic Chemistry, PAS, Department of Biomedical Proteomics, 61-704 Poznań, Poland
| | - Federica Gemignani
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (F.G.)
| | - Filippo M. Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit—IRCCS Stella Maris, 56128 Pisa, Italy; (S.D.); (D.G.)
- Correspondence: ; Tel.: +39-050-886311
| |
Collapse
|