1
|
QingNing S, Mohd Ismail ZI, Ab Patar MNA, Mat Lazim N, Hadie SNH, Mohd Noor NF. The limelight of adipose-derived stem cells in the landscape of neural tissue engineering for peripheral nerve injury. Tissue Cell 2024; 91:102556. [PMID: 39293138 DOI: 10.1016/j.tice.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND AIMS Challenges in treating peripheral nerve injury include prolonged repair time and insufficient functional recovery. Stem cell therapy coupled with neural tissue engineering has been shown to induce nerve regeneration following peripheral nerve injury. Among these stem cells, adipose-derived stem cells (ADSCs) are preferred due to their accessibility, expansion, multidirectional differentiation, and production of essential nutrient factors for nerve growth. In recent years, ADSC-laden nerve guide conduit has been utilized to enhance the therapeutic effects of tissue-engineered nerve grafts. This review explores existing research that recognizes the roles played by ADSCs in inducing peripheral nerve regeneration following injury and summarizes the different methods of application of ADSC-laden nerve conduit in neural tissue engineering.
Collapse
Affiliation(s)
- Sun QingNing
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia; Department of Rehabilitation, School of Special Education, Zhengzhou Normal University, Zhengzhou 450044, China.
| | - Zul Izhar Mohd Ismail
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Mohd Nor Azim Ab Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Siti Nurma Hanim Hadie
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Nor Farid Mohd Noor
- Faculty of Medicine, Universiti Sultan Zainal Abidin Medical Campus, Kuala Terengganu, Terengganu 20400, Malaysia.
| |
Collapse
|
2
|
Jiang S, Chen B, Sun ZY. Enhancing therapeutic potential: Human adipose-derived mesenchymal stem cells modified with recombinant adeno-associated virus expressing VEGF165 gene for peripheral nerve injury. Kaohsiung J Med Sci 2024; 40:819-829. [PMID: 39101328 DOI: 10.1002/kjm2.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
This study aimed to investigate the therapeutic potential of human adipose-derived mesenchymal stem cells (hADSCs) modified with recombinant adeno-associated virus (rAAV) carrying the vascular endothelial growth factor 165 (VEGF165) gene in peripheral nerve injury (PNI). The hADSCs were categorized into blank, control (transduced with rAAV control vector), and VEGF165 (transduced with rAAV VEGF165 vector) groups. Subsequently, Schwann cell differentiation was induced, and Schwann cell markers were assessed. The sciatic nerve injury mouse model received injections of phosphate-buffered saline (PBS group), PBS containing hADSCs (hADSCs group), rAAV control vector (control-hADSCs group), or rAAV VEGF165 vector (VEGF165-hADSCs group) into the nerve defect site. Motor function recovery, evaluated through the sciatic function index (SFI), and nerve regeneration, assessed via toluidine blue staining along with scrutiny of Schwann cell markers and neurotrophic factors, were conducted. Modified hADSCs exhibited enhanced Schwann cell differentiation and elevated expression of Schwann cell markers [S100 calcium-binding protein B (S100B), NGF receptor (NGFR), and glial fibrillary acidic protein (GFAP)]. Mice in the VEGF165-hADSCs group demonstrated improved motor function recovery compared to those in the other three groups, accompanied by increased fiber diameter, axon diameter, and myelin thickness, as well as elevated expression of Schwann cell markers (S100B, NGFR, and GFAP) and neurotrophic factors [mature brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF)] in the distal nerve segment. rAAV-VEGF165 modification enhances hADSC potential in PNI, promoting motor recovery and nerve regeneration. Elevated Schwann cell markers and neurotrophic factors underscore therapy benefits, providing insights for nerve injury strategies.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Bo Chen
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Zhen-Yu Sun
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
3
|
Dong L, Li X, Leng W, Guo Z, Cai T, Ji X, Xu C, Zhu Z, Lin J. Adipose stem cells in tissue regeneration and repair: From bench to bedside. Regen Ther 2023; 24:547-560. [PMID: 37854632 PMCID: PMC10579872 DOI: 10.1016/j.reth.2023.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the "ADSCs-scaffold composite" into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field.
Collapse
Affiliation(s)
- Lei Dong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Xiaoyu Li
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Wenyuan Leng
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Zhenke Guo
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Tianyu Cai
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Xing Ji
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Chunru Xu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Zhenpeng Zhu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| |
Collapse
|
4
|
Yang J, Yang N, Zhao H, Qiao Y, Li Y, Wang C, Lim KL, Zhang C, Yang W, Lu L. Adipose transplantation improves olfactory function and neurogenesis via PKCα-involved lipid metabolism in Seipin Knockout mice. Stem Cell Res Ther 2023; 14:239. [PMID: 37674230 PMCID: PMC10483743 DOI: 10.1186/s13287-023-03463-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Lipodystrophy-associated metabolic disorders caused by Seipin deficiency lead to not only severe lipodystrophy but also neurological disorders. However, the underlying mechanism of Seipin deficiency-induced neuropathy is not well elucidated, and the possible restorative strategy needs to be explored. METHODS In the present study, we used Seipin knockout (KO) mice, combined with transcriptome analysis, mass spectrometry imaging, neurobehavior test, and cellular and molecular assay to investigate the systemic lipid metabolic abnormalities in lipodystrophic mice model and their effects on adult neurogenesis in the subventricular zone (SVZ) and olfactory function. After subcutaneous adipose tissue (AT) transplantation, metabolic and neurological function was measured in Seipin KO mice to clarify whether restoring lipid metabolic homeostasis would improve neurobehavior. RESULTS It was found that Seipin KO mice presented the ectopic accumulation of lipids in the lateral ventricle, accompanied by decreased neurogenesis in adult SVZ, diminished new neuron formation in the olfactory bulb, and impaired olfactory-related memory. Transcriptome analysis showed that the differentially expressed genes (DEGs) in SVZ of adult Seipin KO mice were significantly enriched in lipid metabolism. Mass spectrometry imaging showed that the levels of glycerophospholipid and diglyceride (DG) were significantly increased. Furthermore, we found that AT transplantation rescued the abnormality of peripheral metabolism in Seipin KO mice and ameliorated the ectopic lipid accumulation, concomitant with restoration of the SVZ neurogenesis and olfactory function. Mechanistically, PKCα expression was up-regulated in SVZ tissues of Seipin KO mice, which may be a potential mediator between lipid dysregulation and neurological disorder. DG analogue (Dic8) can up-regulate PKCα and inhibit the proliferation and differentiation of neural stem cells (NSCs) in vitro, while PKCα inhibitor can block this effect. CONCLUSION This study demonstrates that Seipin deficiency can lead to systemic lipid disorder with concomitant SVZ neurogenesis and impaired olfactory memory. However, AT restores lipid homeostasis and neurogenesis. PKCα is a key mediator mediating Seipin KO-induced abnormal lipid metabolism and impaired neurogenesis in the SVZ, and inhibition of PKCα can restore the impaired neurogenesis. This work reveals the underlying mechanism of Seipin deficiency-induced neurological dysfunction and provides new ideas for the treatment of neurological dysfunction caused by metabolic disorders.
Collapse
Affiliation(s)
- Jing Yang
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Na Yang
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Huifang Zhao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yan Qiao
- Analytical Instrumentation Center and State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, People's Republic of China
| | - Yanqiu Li
- Analytical Instrumentation Center and State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, People's Republic of China
| | - Chunfang Wang
- Laboratory Animal Research Center of Shanxi Medical University, Shanxi Key Laboratory of Animal and Animal Model of Human Diseases, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China.
| | - Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
5
|
Riccio M, Gravina P, Pangrazi PP, Cecconato V, Gigante A, De Francesco F. Ulnar nerve anteposition with adipofascial flap, an alternative treatment for severe cubital syndrome. BMC Surg 2023; 23:268. [PMID: 37667203 PMCID: PMC10476434 DOI: 10.1186/s12893-023-02173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Ulnar nerve entrapment at the elbow is the second most common cause of nerve entrapment in the upper limb. Surgical techniques mainly include simple decompression, decompression with anterior transposition and medial epicondylectomy. METHODS We performed decompression with anterior transposition and protected ulnar nerve by adipofascial flap (a random flap with radial based vascularization, harvested through the avascular plane of Scarpa's fascia. We analyzed patients who underwent ulnar nerve ante-position from 2015 to 2022 according to inclusion and exclusion criteria for a total of 57 patients. All patients included were graded on the McGowan's classification Messina criteria and the British Medical Research Council modified by Mackinnon and Dellon. RESULTS The average McGowan's score was 2.4 (± 0.6), Messina's criteria 91.2% indicated a satisfactory or excellent result, sensibility at 6 months was 98.5% S3 or more. A preferential technique has not yet been defined. CONCLUSIONS The adipofascial flap offers numerous advantages in providing a pliable, vascular fat envelope, which mimics the natural fatty environment of peripheral nerves and creates favorable micro-environmental conditions to contribute to neural regeneration via axon outgrowth.
Collapse
Affiliation(s)
- Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, University Hospital (AOU Ospedali Riuniti delle Marche), Via Conca 71, Torrette Di Ancona, Ancona, 60123, Italy
| | - Pasquale Gravina
- Department of Reconstructive Surgery and Hand Surgery, University Hospital (AOU Ospedali Riuniti delle Marche), Via Conca 71, Torrette Di Ancona, Ancona, 60123, Italy
- Clinical Orthopedics, Department of Clinical and Molecular Science, School of Medicine, Università Politecnica Delle Marche, Via Tronto, 10/a, 60126, Ancona, AN, Italy
| | - Pier Paolo Pangrazi
- Department of Reconstructive Surgery and Hand Surgery, University Hospital (AOU Ospedali Riuniti delle Marche), Via Conca 71, Torrette Di Ancona, Ancona, 60123, Italy
| | - Valentina Cecconato
- Department of Reconstructive Surgery and Hand Surgery, University Hospital (AOU Ospedali Riuniti delle Marche), Via Conca 71, Torrette Di Ancona, Ancona, 60123, Italy
| | - Antonio Gigante
- Clinical Orthopedics, Department of Clinical and Molecular Science, School of Medicine, Università Politecnica Delle Marche, Via Tronto, 10/a, 60126, Ancona, AN, Italy
| | - Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, University Hospital (AOU Ospedali Riuniti delle Marche), Via Conca 71, Torrette Di Ancona, Ancona, 60123, Italy.
| |
Collapse
|
6
|
Mishra G, Townsend KL. The metabolic and functional roles of sensory nerves in adipose tissues. Nat Metab 2023; 5:1461-1474. [PMID: 37709960 DOI: 10.1038/s42255-023-00868-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
Homeostatic regulation of adipose tissue is critical for the maintenance of energy balance and whole-body metabolism. The peripheral nervous system provides bidirectional neural communication between the brain and adipose tissue, thereby providing homeostatic control. Most research on adipose innervation and nerve functions has been limited to the sympathetic nerves and their neurotransmitter norepinephrine. In recent years, more work has focused on adipose sensory nerves, but the contributions of subsets of sensory nerves to metabolism and the specific roles contributed by sensory neuropeptides are still understudied. Advances in imaging of adipose innervation and newer tissue denervation techniques have confirmed that sensory nerves contribute to the regulation of adipose functions, including lipolysis and browning. Here, we summarize the historical and latest findings on the regulation, function and plasticity of adipose tissue sensory nerves that contribute to metabolically important processes such as lipolysis, vascular control and sympathetic axis cross-talk.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Chen SH, Wu CC, Tseng WL, Lu FI, Liu YH, Lin SP, Lin SC, Hsueh YY. Adipose-derived stem cells modulate neuroinflammation and improve functional recovery in chronic constriction injury of the rat sciatic nerve. Front Neurosci 2023; 17:1172740. [PMID: 37457010 PMCID: PMC10339833 DOI: 10.3389/fnins.2023.1172740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Compressive neuropathy, a common chronic traumatic injury of peripheral nerves, leads to variable impairment in sensory and motor function. Clinical symptoms persist in a significant portion of patients despite decompression, with muscle atrophy and persistent neuropathic pain affecting 10%-25% of cases. Excessive inflammation and immune cell infiltration in the injured nerve hinder axon regeneration and functional recovery. Although adipose-derived stem cells (ASCs) have demonstrated neural regeneration and immunomodulatory potential, their specific effects on compressive neuropathy are still unclear. Methods We conducted modified CCI models on adult male Sprague-Dawley rats to induce irreversible neuropathic pain and muscle atrophy in the sciatic nerve. Intraneural ASC injection and nerve decompression were performed. Behavioral analysis, muscle examination, electrophysiological evaluation, and immunofluorescent examination of the injured nerve and associated DRG were conducted to explore axon regeneration, neuroinflammation, and the modulation of inflammatory gene expression. Transplanted ASCs were tracked to investigate potential beneficial mechanisms on the local nerve and DRG. Results Persistent neuropathic pain was induced by chronic constriction of the rat sciatic nerve. Local ASC treatment has demonstrated robust beneficial outcomes, including the alleviation of mechanical allodynia, improvement of gait, regeneration of muscle fibers, and electrophysiological recovery. In addition, locally transplanted ASCs facilitated axon remyelination, alleviated neuroinflammation, and reduced inflammatory cell infiltration of the injured nerve and associated dorsal root ganglion (DRG). Trafficking of the transplanted ASC preserved viability and phenotype less than 7 days but contributed to robust immunomodulatory regulation of inflammatory gene expression in both the injured nerve and DRG. Discussion Locally transplanted ASC on compressed nerve improve sensory and motor recoveries from irreversible chronic constriction injury of rat sciatic nerve via alleviation of both local and remote neuroinflammation, suggesting the promising role of adjuvant ASC therapies for clinical compressive neuropathy.
Collapse
Affiliation(s)
- Szu-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ling Tseng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fu-I Lu
- Department of Biotechnology and Bioindustry Science, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- The integrative Evolutionary Galliform Genomics (iEGG) and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Sheng-Che Lin
- Division of Plastic Surgery, Department of Surgery, An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yuan-Yu Hsueh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To review advances in the diagnostic evaluation and management of traumatic peripheral nerve injuries. RECENT FINDINGS Serial multimodal assessment of peripheral nerve injuries facilitates assessment of spontaneous axonal regeneration and selection of appropriate patients for early surgical intervention. Novel surgical and rehabilitative approaches have been developed to complement established strategies, particularly in the area of nerve grafting, targeted rehabilitation strategies and interventions to promote nerve regeneration. However, several management challenges remain, including incomplete reinnervation, traumatic neuroma development, maladaptive central remodeling and management of fatigue, which compromise functional recovery. SUMMARY Innovative approaches to the assessment and treatment of peripheral nerve injuries hold promise in improving the degree of functional recovery; however, this remains a complex and evolving area.
Collapse
|
9
|
Wei S, Hu Q, Ma J, Dai X, Sun Y, Han G, Meng H, Xu W, Zhang L, Ma X, Peng J, Wang Y. Acellular nerve xenografts based on supercritical extraction technology for repairing long-distance sciatic nerve defects in rats. Bioact Mater 2022; 18:300-320. [PMID: 35387172 PMCID: PMC8961471 DOI: 10.1016/j.bioactmat.2022.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Compared to conventional artificial nerve guide conduits (NGCs) prepared using natural polymers or synthetic polymers, acellular nerve grafts (ACNGs) derived from natural nerves with eliminated immune components have natural bionic advantages in composition and structure that polymer materials do not have. To further optimize the repair effect of ACNGs, in this study, we used a composite technology based on supercritical carbon dioxide (scCO2) extraction to process the peripheral nerve of a large mammal, the Yorkshire pig, and obtained an innovative Acellular nerve xenografts (ANXs, namely, CD + scCO2 NG). After scCO2 extraction, the fat and DNA content in CD + scCO2 NG has been removed to the greatest extent, which can better supported cell adhesion and proliferation, inducing an extremely weak inflammatory response. Interestingly, the protein in the CD + scCO2 NG was primarily involved in signaling pathways related to axon guidance. Moreover, compared with the pure chemical decellularized nerve graft (CD NG), the DRG axons grew naturally on the CD + scCO2 NG membrane and extended long distances. In vivo studies further revealed that the regenerated nerve axons had basically crossed the CD + scCO2 NG 3 weeks after surgery. 12 weeks after surgery, CD + scCO2 NG was similar to autologous nerves in improving the quality of nerve regeneration, target muscle morphology and motor function recovery and was significantly better than hollow NGCs and CD NG. Therefore, we believe that the fully decellularized and fat-free porcine ACNGs may be the most promising “bridge” for repairing human nerve defects at this stage and for some time to come. The native adipose tissue inside acellular nerve xenografts hinders regenerated nerve fibers. Environmentally friendly scCO2 extraction has natural advantages in reducing fat content. Natural three-dimensional nerve basement membrane tube structure guides regenerating axons.
Collapse
|
10
|
Ricciardi L, Pucci R, Piazza A, Lofrese G, Scerrati A, Montemurro N, Raco A, Miscusi M, Ius T, Zeppieri M. Role of stem cells-based in facial nerve reanimation: A meta-analysis of histological and neurophysiological outcomes. World J Stem Cells 2022; 14:420-428. [PMID: 35949396 PMCID: PMC9244955 DOI: 10.4252/wjsc.v14.i6.420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/21/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Treatments involving stem cell (SC) usage represent novel and potentially interesting alternatives in facial nerve reanimation. Current literature includes the use of SC in animal model studies to promote graft survival by enhancing nerve fiber growth, spreading, myelinization, in addition to limiting fibrotic degeneration after surgery. However, the effectiveness of the clinical use of SC in facial nerve reanimation has not been clarified yet.
AIM To investigate the histological, neurophysiological, and functional outcomes in facial reanimation using SC, compared to autograft.
METHODS Our study is a systematic review of the literature, consistently conducted according to the preferred reporting items for systematic reviews and meta-analyses statement guidelines. The review question was: In facial nerve reanimation on rats, has the use of stem cells revealed as effective when compared to autograft, in terms of histological, neurophysiological, and functional outcomes? Random-effect meta-analysis was conducted on histological and neurophysiological data from the included comparative studies.
RESULTS After screening 148 manuscript, five papers were included in our study. 43 subjects were included in the SC group, while 40 in the autograft group. The meta-analysis showed no significative differences between the two groups in terms of myelin thickness [CI: -0.10 (-0.20, 0.00); I2 = 29%; P = 0.06], nerve fibers diameter [CI: 0.72 (-0.93, 3.36); I2 = 72%; P = 0.6], compound muscle action potential amplitude [CI: 1.59 (0.59, 3.77); I2 = 89%; P = 0.15] and latency [CI: 0.66 (-1.01, 2.32); I2 = 67%; P = 0.44]. The mean axonal diameter was higher in the autograft group [CI: 0.94 (0.60, 1.27); I2 = 0%; P ≤ 0.001].
CONCLUSION The role of stem cells in facial reanimation is still relatively poorly studied, in animal models, and available results should not discourage their use in future studies on human subjects.
Collapse
Affiliation(s)
- Luca Ricciardi
- Division of Neurosurgery, AOU Sant’Andrea, Department of NESMOS, Sapienza University, Rome 00189, Italy
| | - Resi Pucci
- Department of Oral and Maxillofacial Sciences, Sapienza University, Rome 00161, Italy
| | - Amedeo Piazza
- Division of Neurosurgery, AOU Sant’Andrea, Department of NESMOS, Sapienza University, Rome 00189, Italy
| | - Giorgio Lofrese
- Division of Neurosurgery, Ospedale Bufalini, Cesena 47521, Italy
| | - Alba Scerrati
- Department of Neurosurgery, Sant'Anna University Hospital, S. Anna University Hospital, Ferrara 44121, Italy
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana, Pisa 56126, Italy
| | - Antonino Raco
- Division of Neurosurgery, AOU Sant’Andrea, Department of NESMOS, Sapienza University, Rome 00189, Italy
| | - Massimo Miscusi
- Division of Neurosurgery, AOU Sant’Andrea, Department of NESMOS, Sapienza University, Rome 00189, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine 33100, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|