1
|
Liu JY, Liu JX, Li R, Zhang ZQ, Zhang XH, Xing SJ, Sui BD, Jin F, Ma B, Zheng CX. AMPK, a hub for the microenvironmental regulation of bone homeostasis and diseases. J Cell Physiol 2024; 239:e31393. [PMID: 39210747 DOI: 10.1002/jcp.31393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
AMP-activated protein kinase (AMPK), a crucial regulatory kinase, monitors energy levels, conserving ATP and boosting synthesis in low-nutrition, low-energy states. Its sensitivity links microenvironmental changes to cellular responses. As the primary support structure and endocrine organ, the maintenance, and repair of bones are closely associated with the microenvironment. While a series of studies have explored the effects of specific microenvironments on bone, there is lack of angles to comprehensively evaluate the interactions between microenvironment and bone cells, especially for bone marrow mesenchymal stem cells (BMMSCs) which mediate the differentiation of osteogenic lineage. It is noteworthy that accumulating evidence has indicated that AMPK may serve as a hub between BMMSCs and microenvironment factors, thus providing a new perspective for us to understand the biology and pathophysiology of stem cells and bone. In this review, we emphasize AMPK's pivotal role in bone microenvironment modulation via ATP, inflammation, reactive oxygen species (ROS), calcium, and glucose, particularly in BMMSCs. We further explore the use of AMPK-activating drugs in the context of osteoarthritis and osteoporosis. Moreover, building upon the foundation of AMPK, we elucidate a viewpoint that facilitates a comprehensive understanding of the dynamic relationship between the microenvironment and bone homeostasis, offering valuable insights for prospective investigations into stem cell biology and the treatment of bone diseases.
Collapse
Affiliation(s)
- Jin-Yu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jie-Xi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Rang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zi-Qi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiao-Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Shu-Juan Xing
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bo Ma
- State Key Laboratory of National Security Specially Needed Medicines, Academy of Military Medical Sciences, Beijing, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Shen J, Liu YP, Wang Q, Chen H, Hu Y, Guo X, Liu X, Li Y. Integrated network pharmacology, transcriptomics and metabolomics analysis to reveal the mechanism of salt Eucommia cortex in the treatment of chronic kidney disease mineral bone disorders via the PPARG/AMPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116590. [PMID: 37207881 DOI: 10.1016/j.jep.2023.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The skeletal complications associated with chronic kidney diseases from stages 3-5 in individuals are called Chronic Kidney Disease-Mineral Bone Disorder (CKD-MBD), which increases the incidence of cardiovascular diseases drastically and affects the quality of life of patients seriously. Eucommia cortex has the effect of tonifying kidneys and strengthening bones, and salt Eucommia cortex is one of the most commonly used traditional Chinese medicines in the clinical treatment of CKD-MBD instead of Eucommia cortex. However, its mechanism still remains unexplored. AIM OF THE STUDY The aim of this study was to investigate the effects and mechanisms of salt Eucommia cortex on CKD-MBD by integrating network pharmacology, transcriptomics, and metabolomics. MATERIALS AND METHODS The CKD-MBD mice induced by 5/6 nephrectomy and low calcium/high phosphorus diet were treated with salt Eucommia cortex. The renal functions and bone injuries were evaluated by serum biochemical detection, histopathological analyses, and femur Micro-CT examinations. Differentially expressed genes (DEGs) between the control group and model group, model group and high-dose Eucommia cortex group, model group and high-dose salt Eucommia cortex group were analyzed by transcriptomic analysis. The differentially expressed metabolites (DEMs) between the control group and model group, model group and high-dose Eucommia cortex group, model group and high-dose salt Eucommia cortex group were analyzed by metabolomics analysis.The common targets and pathways were obtained by integrating transcriptomics, metabolomics and network pharmacology, which were identified and verified by in vivo experiments. RESULTS The negative impacts on the renal functions and bone injuries were alleviated with salt Eucommia cortex treatment effectively. Compared with CKD-MBD model mice, the levels of serum BUN, Ca and urine Upr were significantly decreased in the salt Eucommia cortex group. And the Integrated network pharmacology, transcriptomics and metabolomics analysis revealed that Peroxisome Proliferative Activated Receptor, Gamma (PPARG) was the only common target, mainly involved by AMPK signaling pathways. The activation of PPARG in the kidney tissue was significantly decreased in CKD-MBD mice but increased in the salt Eucommia cortex treatment. The AMPK signaling pathway were verified that AMPK expression levels were decreased in CKD-MBD mice but increased in the salt Eucommia cortex treatment. CONCLUSIONS Our study presented that salt Eucommia cortex alleviated the negative impact of CKD-MBD on the renal injury and bone injury of mice induced by 5/6 nephrectomy with the low calcium/high phosphorus diet effectively, which is highly likely achieved through the PPARG/AMPK signaling pathway.
Collapse
Affiliation(s)
- Jie Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chendu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| | - You-Ping Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chendu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Qin Wang
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| | - Hongping Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chendu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chendu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaohong Guo
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| | - Xia Liu
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| | - Yanhui Li
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| |
Collapse
|
3
|
Critical review on anti-obesity effects of phytochemicals through Wnt/β-catenin signaling pathway. Pharmacol Res 2022; 184:106461. [PMID: 36152739 DOI: 10.1016/j.phrs.2022.106461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
Abstract
Phytochemicals have been used as one of the sources for the development of anti-obesity drugs. Plants are rich in a variety of bioactive compounds including polyphenols, saponins and terpenes. Phytochemicals inhibit adipocyte differentiation by inhibiting the transcription and translation of adipogenesis transcription factors such as C/EBPα and PPARγ. It has been proved that phytochemicals inhibit the genes and proteins associated with adipogenesis and lipid accumulation by activating Wnt/β-catenin signaling pathway. The activation of Wnt/β-catenin signaling pathway by phytochemicals is multi-target regulation, including the regulation of pathway critical factor β-catenin and its target gene, the downregulation of destruction complex, and the up-regulation of Wnt ligands, its cell surface receptor and Wnt antagonist. In this review, the literature on the anti-obesity effect of phytochemicals through Wnt/β-catenin signaling pathway is collected from Google Scholar, Scopus, PubMed, and Web of Science, and summarizes the regulation mechanism of phytochemicals in this pathway. As one of the alternative methods of weight loss drugs, Phytochemicals inhibit adipogenesis through Wnt/β-catenin signaling pathway. More progress in relevant fields may pose phytochemicals as the main source of anti-obesity treatment.
Collapse
|