1
|
D'Aversa E, Salvatori F, Vaccarezza M, Antonica B, Grisafi M, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. circRNAs as Epigenetic Regulators of Integrity in Blood-Brain Barrier Architecture: Mechanisms and Therapeutic Strategies in Multiple Sclerosis. Cells 2024; 13:1316. [PMID: 39195206 DOI: 10.3390/cells13161316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease leading to progressive demyelination and neuronal loss, with extensive neurological symptoms. As one of the most widespread neurodegenerative disorders, with an age onset of about 30 years, it turns out to be a socio-health and economic issue, thus necessitating therapeutic interventions currently unavailable. Loss of integrity in the blood-brain barrier (BBB) is one of the distinct MS hallmarks. Brain homeostasis is ensured by an endothelial cell-based monolayer at the interface between the central nervous system (CNS) and systemic bloodstream, acting as a selective barrier. MS results in enhanced barrier permeability, mainly due to the breakdown of tight (TJs) and adherens junctions (AJs) between endothelial cells. Specifically, proinflammatory mediator release causes failure in cytoplasmic exposure of junctions, resulting in compromised BBB integrity that enables blood cells to cross the barrier, establishing iron deposition and neuronal impairment. Cells with a compromised cytoskeletal protein network, fiber reorganization, and discontinuous junction structure can occur, resulting in BBB dysfunction. Recent investigations on spatial transcriptomics have proven circularRNAs (circRNAs) to be powerful multi-functional molecules able to epigenetically regulate transcription and structurally support proteins. In the present review, we provide an overview of the recent role ascribed to circRNAs in maintaining BBB integrity/permeability via cytoskeletal stability. Increased knowledge of the mechanisms responsible for impairment and circRNA's role in driving BBB damage and dysfunction might be helpful for the recognition of novel therapeutic targets to overcome BBB damage and unrestrained neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta D'Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Bianca Antonica
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Miriana Grisafi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Baro L, Islam A, Brown HM, Bell ZA, Juanes MA. APC-driven actin nucleation powers collective cell dynamics in colorectal cancer cells. iScience 2023; 26:106583. [PMID: 37128612 PMCID: PMC10148130 DOI: 10.1016/j.isci.2023.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Cell remodeling relies on dynamic rearrangements of cell contacts powered by the actin cytoskeleton. The tumor suppressor adenomatous polyposis coli (APC) nucleate actin filaments (F-actin) and localizes at cell junctions. Whether APC-driven actin nucleation acts in cell junction remodeling remains unknown. By combining bioimaging and genetic tools with artificial intelligence algorithms applied to colorectal cancer cell, we found that the APC-dependent actin pool contributes to sustaining levels of F-actin, as well as E-cadherin and occludin protein levels at cell junctions. Moreover, this activity preserved cell junction length and angle, as well as vertex motion and integrity. Loss of this F-actin pool led to larger cells with slow and random cell movement within a sheet. Our findings suggest that APC-driven actin nucleation promotes cell junction integrity and dynamics to facilitate collective cell remodeling and motility. This offers a new perspective to explore the relevance of APC-driven cytoskeletal function in gut morphogenesis.
Collapse
Affiliation(s)
- Lautaro Baro
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Asifa Islam
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Hannah M. Brown
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Zoë A. Bell
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - M. Angeles Juanes
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
3
|
Knox EG, Aburto MR, Tessier C, Nagpal J, Clarke G, O’Driscoll CM, Cryan JF. Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function. iScience 2022; 25:105648. [PMID: 36505934 PMCID: PMC9732410 DOI: 10.1016/j.isci.2022.105648] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The gut microbiota influences host brain function, but the underlying gut-brain axis connections and molecular processes remain unclear. One pathway along this bidirectional communication system involves circulating microbially derived metabolites, such as short-chain fatty acids (SCFAs), which include butyrate and propionate. Brain endothelium is the main interface of communication between circulating signals and the brain, and it constitutes the main component of the blood-brain barrier (BBB). Here, we used a well-established in vitro BBB model treated with physiologically relevant concentrations of butyrate and propionate with and without lipopolysaccharide (LPS) to examine the effects of SCFAs on the actin cytoskeleton and tight junction protein structure. Both SCFAs induced distinct alterations to filamentous actin directionality. SCFAs also increased tight junction protein spikes and protected from LPS-induced tight-junction mis-localization, improved BBB integrity, and modulated mitochondrial network dynamics. These findings identify the actin cytoskeletal dynamics as another target further illuminating how SCFAs can influence BBB physiology.
Collapse
Affiliation(s)
- Emily G. Knox
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Maria R. Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,Corresponding author
| | - Carmen Tessier
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jatin Nagpal
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland,Corresponding author
| |
Collapse
|
4
|
Mentor S, Fisher D. Exosomes form tunneling nanotubes (TUNTs) in the blood-brain barrier: a nano-anatomical perspective of barrier genesis. Front Mol Neurosci 2022; 15:938315. [PMID: 36204136 PMCID: PMC9531021 DOI: 10.3389/fnmol.2022.938315] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
The blood-brain barrier (BBB) is a robust interface between the blood and the central nervous system. Barrier type endothelium is able to limit paracellular (PC) movement, relegating molecular flux to the transendothelial pathways of brain endothelial cells (BECs). It is, therefore, apparent that any leakage via the PC shunts would effectively nullify the regulation of molecular flux across the transcellular pathways. The application of higher-resolution scanning electron microscopy (HR-SEM) illuminates the heterogenous, morphological profile that exists on the surface of BEC membranes and the relationship between these ultrastructures during the molecular construction of the PC space between adjacent BECs. In this study developing BEC monolayers were grown on mixed, cellulose esters insert membranes in a bicameral system. BEC monolayers were fixed in 2.5% glutaraldehyde, hydrated, critically dried, and sputter-coated, for imaging utilizing HR-SEM. This study, for the first time, showed membrane-bound exosomes were attached to the plasma membrane surfaces of the BECs. The exosomes were characterized as small membrane-bound, nano-sized exosomes (30–300 nm). Based on their membrane morphology and anatomical structure, exosomes appear to possess two distinct functions, namely: paracrine secretion and nanotube construction between adjacent BECs, during in vitro barrier genesis. The HR-SEM micrographs in conjunction with the Tipifarnib inhibition of exosome formation, suggests that brain capillary endothelial exosomes play a prominent role in the bilateral signaling, which contribute to the regulation of the permeability of the BBB. Given that blood-brain barrier permeability has been implicated in the progression of many neurodegenerative pathologies, the role of these exosomes and TUNTs posits the capacity of these structures to exacerbate neuropathologies that implicate BBB permeability. These findings could lead to the development of novel treatment interventions and moreover, the characterization of BBB exosomes may be a reliable target for identifying therapeutic biomarkers in neurodegenerative disease. Conversely, the presence of BBB exosomes raises a critical enterprise to target the exosome-induced nanotubes as a vehicle for transferring therapeutic treatments across the BBB.
Collapse
Affiliation(s)
- Shireen Mentor
- Neurobiology Research Group, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - David Fisher
- Neurobiology Research Group, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
- School of Health Professions, University of Missouri, Columbia, MO, United States
- *Correspondence: David Fisher
| |
Collapse
|
5
|
Mentor S, Fisher D. The Ism between Endothelial Cilia and Endothelial Nanotubules Is an Evolving Concept in the Genesis of the BBB. Int J Mol Sci 2022; 23:ijms23052457. [PMID: 35269595 PMCID: PMC8910322 DOI: 10.3390/ijms23052457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
The blood–brain barrier (BBB) is fundamental in maintaining central nervous system (CNS) homeostasis by regulating the chemical environment of the underlying brain parenchyma. Brain endothelial cells (BECs) constitute the anatomical and functional basis of the BBB. Communication between adjacent BECs is critical for establishing BBB integrity, and knowledge of its nanoscopic landscape will contribute to our understanding of how juxtaposed zones of tight-junction protein interactions between BECs are aligned. The review discusses and critiques types of nanostructures contributing to the process of BBB genesis. We further critically evaluate earlier findings in light of novel high-resolution electron microscopy descriptions of nanoscopic tubules. One such phenotypic structure is BEC cytoplasmic projections, which, early in the literature, is postulated as brain capillary endothelial cilia, and is evaluated and compared to the recently discovered nanotubules (NTs) formed in the paracellular spaces between BECs during barrier-genesis. The review attempts to elucidate a myriad of unique topographical ultrastructures that have been reported to be associated with the development of the BBB, viz., structures ranging from cilia to BEC tunneling nanotubules (TUNTs) and BEC tethering nanotubules (TENTs).
Collapse
Affiliation(s)
- Shireen Mentor
- Neurobiology Research Group, Department of Medical Biosciences, University of the Western Cape, Bellville, Cape Town 7535, South Africa;
| | - David Fisher
- Neurobiology Research Group, Department of Medical Biosciences, University of the Western Cape, Bellville, Cape Town 7535, South Africa;
- School of Health Professions, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|