1
|
Liu L, Yang A, Liu T, Liu S, Hu P, Chen C, Zhou H, Wu J, Yu F. Transcriptome and Metabolome Analyses of Leaves from Cutting Rejuvenation of Ancient Cinnamomum camphora. Int J Mol Sci 2024; 25:7664. [PMID: 39062907 PMCID: PMC11277138 DOI: 10.3390/ijms25147664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Rejuvenation refers to the transition from the state of mature to juvenile. Many ancient Cinnamomum camphora have aged and died due to climatic and anthropic factors. Vegetative propagation can protect valuable germplasm resources. In this study, a 2000-year-old ancient C. camphora and its 2-year-old cutting plantlets were selected as experimental materials. The results indicated that the number of leaves with palisade tissue (Pal) cell layers was different between samples, with two layers in the rejuvenated leaves (RLs) and one layer in the mature leaves (MLs) and young leaves (YLs). Indole-3-acetic acid (IAA), isopentenyladenine (iP) and isopentenyladenosine (iPR) concentrations were significantly higher in RLs than in MLs and YLs, but the abscisic acid (ABA) concentration was lower. Targeted metabolome analysis identified 293 differentially accumulated metabolites (DAMs). Meanwhile, a total of 5241 differentially expressed genes (DEGs) were identified by transcriptome sequencing. According to the KEGG analysis, there were seven important enriched pathways in the MLs, RLs and YLs, including plant hormone signal transduction (57 DEGs), plant-pathogen interaction (56 DEGs) and MAPK signaling pathway-plant (36 DEGs). KEGG enrichment conjoint analyses of DEGs and DAMs identified 16 common pathways. Integrated analyses of cytological, hormone, metabolome and transcriptome elements can provide a research basis in regard to the rejuvenation regulatory mechanism of ancient C. camphora.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Faxin Yu
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species (NO.2024SSY04092), Institute of Biological Resources, Jiangxi Academy of Sciences, No. 7777, Changdong Road, Nanchang 330096, China; (L.L.); (A.Y.); (T.L.); (S.L.); (P.H.); (C.C.); (H.Z.); (J.W.)
| |
Collapse
|
2
|
Cheng X, Li D, Jiang Z, Qu C, Yan H, Wu Q. Metabolite profiling and transcriptomic analyses demonstrate the effects of biocontrol agents on alkaloid accumulation in Fritillaria thunbergii. BMC PLANT BIOLOGY 2023; 23:435. [PMID: 37723471 PMCID: PMC10506312 DOI: 10.1186/s12870-023-04459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND During Fritillaria thunbergii planting, pests and diseases usually invade the plant, resulting in reduced yield and quality. Previous studies have demonstrated that using biocontrol agents can effectively control grubs and affect the steroid alkaloids content in F. thunbergii. However, the molecular regulatory mechanisms underlying the differences in the accumulation of steroid alkaloids in response to biocontrol agents remain unclear. RESULTS Combined transcriptomic and metabolic analyses were performed by treating the bulbs of F. thunbergii treated with biocontrol agents during planting. Otherwise, 48 alkaloids including 32 steroid alkaloids, 6 indole alkaloids, 2 scopolamine-type alkaloids, 1 isoquinoline alkaloid, 1 furoquinoline alkaloid, and 6 other alkaloids were identified. The content of steroidal alkaloids particularly peimine, peiminine, and veratramine, increased significantly in the group treated with the biocontrol agents. Transcriptome sequencing identified 929 differential genes using biocontrol agents, including 589 upregulated and 340 downregulated genes. Putative biosynthesis networks of steroid alkaloids have been established and combined with differentially expressed structural unigenes, such as acetyl-CoA C-acetyl-transferase, acelyl-CoAC-acetyltransferase3-hydroxy-3-methylglutaryl-coenzyme A synthase, 1-deoxy-D-xylulose-5-phosphate reductor-isomerase, 2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase. In addition, biological processes such as amino acid accumulation and oxidative phosphorylation were predicted to be related to the synthesis of steroid alkaloids. Cytochrome P450 enzymes also play crucial roles in the steroid alkaloid synthesis. The transcription factor families MYB and bHLH were significantly upregulated after using biocontrol agents. CONCLUSIONS Biocontrol agents increased the steroid alkaloids accumulation of steroid alkaloids by affecting key enzymes in the steroid alkaloid synthesis pathway, biological processes of oxidative phosphorylation and amino acid synthesis, cytochrome P450 enzymes, and transcription factors. This study revealed the mechanism underlying the difference in steroidal alkaloids in F. thunbergii after using biocontrol agents, laying the groundwork for future industrial production of steroid alkaloids and ecological planting of medicinal materials in the future.
Collapse
Affiliation(s)
- Xuemei Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Dishuai Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Zheng Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Cheng Qu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China.
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China.
| | - Hui Yan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Qinan Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China.
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China.
| |
Collapse
|
3
|
Duan Y, Liu X, Wu J, You J, Wang F, Guo X, Tang T, Liao M, Guo J. Transcriptomic and metabolic analyses reveal the potential mechanism of increasing steroidal alkaloids in Fritillaria hupehensis through intercropping with Magnolia officinalis. FRONTIERS IN PLANT SCIENCE 2022; 13:997868. [PMID: 36275508 PMCID: PMC9585282 DOI: 10.3389/fpls.2022.997868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Fritillaria hupehensis, a well-known medicinal perennial herb, is used as an antitussive and an expectorant. Continuous cropping and monoculture cultivation usually negativly affect the growth of F. hupehensis. Compared with the monoculture system, the F. hupehensis-Magnolia officinalis intercropping system significantly increases the yield of F. hupehensis. However, changes in steroidal alkaloid metabolites (the most important bioactive components) and their molecular regulatory mechanisms in F. hupehensis intercropping system remain unclear. We performed comparative transcriptomic and metabolomic analyses of F. hupehensis bulbs grown in monocropping and intercropping systems. A total of 40 alkaloids were identified, including 26 steroidal alkaloids, 4 plumeranes, 3 phenolamines, 1 pyridine alkaloid, and 6 other alkaloids. The results showed that intercropping significantly increased the levels of peimine, peiminine, hupehenine, korseveridine, verticinone N-oxide, delafrine, tortifoline, pingbeinone, puqienine B, puqienine E, jervine, ussuriedine, hydroxymandelonitrile, N-feruloylputrescine, and N-benzylmethylene isomethylamine in F. hupehensis, but decreased the levels of indole, p-coumaroylputrescine, and N-benzylformamide. Transcriptome sequencing identified 11,466 differentially expressed unigenes in F. hupehensis under the intercropping system, of which 5,656 genes were up-regulated and 5,810 genes were down-regulated. We proposed a possible steroidal alkaloid biosynthesis pathway, in which 12 differentially expressed genes were identified. The higher expressions of these genes in the intercropping system positively correlated with the high accumulation of peimine, peiminine, and hupehenine, further validating our proposal. Moreover, the biological processes of oxidative phosphorylation and plant hormone signal transduction, cytochrome P450 enzymes, ATP-binding cassette transporters, and transcription factors may play pivotal roles in the regulation of steroidal alkaloid biosynthesis. This study revealed the underlying molecular mechanisms of intercropping in improving steroidal alkaloids in F. hupehensis at the transcriptome and metabolome levels. These findings provided a theoretical foundation for sustainable development of this ecological planting method.
Collapse
Affiliation(s)
- Yuanyuan Duan
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Under-forest Economy, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Xiaohong Liu
- Hubei Engineering Research Center of Under-forest Economy, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jiaqi Wu
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Jingmao You
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Fanfan Wang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Xiaoliang Guo
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Under-forest Economy, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Tao Tang
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Good Agricultural Practices (GAP) Production for Chinese Herbal Medicines, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Mingyan Liao
- Productivity Promotion Center of Enshi Tujia and Miao Autonomous Prefecture, Bureau of Science and Technology of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Jie Guo
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Institute of Chinese Herbel Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
- Hubei Engineering Research Center of Under-forest Economy, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|