Guo R, Wang P. Tumor-derived extracellular vesicles: Hijacking T cell function through exhaustion.
Pathol Res Pract 2025;
269:155948. [PMID:
40168777 DOI:
10.1016/j.prp.2025.155948]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Extracellular vesicles (EVs) play a vital role in intercellular communication within the tumor microenvironment (TME). These vesicles, secreted by tumor cells, contain proteins, lipids, and nucleic acids that significantly influence immune responses, particularly impacting T-cell function. In cancer, T cell dysfunction and exhaustion-marked by reduced proliferation, diminished cytokine production, and impaired cytotoxic activity-are key barriers to effective immune responses. Tumor-derived extracellular vesicles (TEVs) contribute to this dysfunction by carrying immunosuppressive molecules, such as transforming growth factor-beta (TGF-β) and various microRNAs (miRNAs). These TEV-mediated mechanisms promote T cell exhaustion and foster a broader immunosuppressive environment, enabling tumor progression and immune evasion. Furthermore, TEVs have been implicated in resistance to cancer immunotherapies, including immune checkpoint inhibitors and T cell therapies. Understanding the molecular pathways and cargoes within TEVs that drive T cell dysfunction is crucial for developing novel therapeutic strategies aimed at reinvigorating exhausted T cells, enhancing anti-tumor immunity, and improving cancer treatment outcomes.
Collapse