1
|
Zhdanov DD, Gladilina YA, Shisparenok AN. Apoptotic endonuclease EndoG induces alternative splicing of Caspase-2. BIOMEDITSINSKAIA KHIMIIA 2024; 70:218-230. [PMID: 39239896 DOI: 10.18097/pbmc20247004218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Caspase-2 (Casp-2) is an enzyme that regulates the development of apoptosis upon alternative splicing of its mRNA. The long form of Casp-2 (Casp-2L) promotes apoptosis while the short form (Casp-2S) has decreased enzymatic activity and inhibits the development of apoptotic processes. However, very little is known about the mechanism of Casp-2 alternative splicing. Several endonucleases are known to participate in this process. The aim of this study was to determine the role of EndoG in regulation of Casp-2 alternative splicing. Strong correlation between expression levels of EndoG and Casp-2 splice-variants was found in CD4⁺ and CD8⁺ human T lymphocytes. Such correlation increased after incubation of these cells with etoposide. Increased expression of Casp-2S was determined during EndoG over-expression in CD4⁺ T-cells, after EndoG treatment of cell cytoplasm and nuclei and after nuclei incubation with EndoG digested cell RNA. Casp-2 alternative splicing was induced by a 60-mer RNA oligonucleotide in naked nuclei and in cells after transfection. The identified long non-coding RNA of 1016 nucleotides is the precursor of the 60-mer RNA oligonucleotide. Based on the results the following mechanism has been proposed. Casp-2 pre-mRNA is transcribed from the coding DNA strand while long non-coding RNA is transcribed from the template strand of the Casp-2 gene. EndoG digests long non-coding RNA and produces the 60-mer RNA oligonucleotide complementary to the Casp-2 pre-mRNA exon 9 and intron 9 junction place. Interaction of the 60-mer RNA oligonucleotide and Casp-2 pre-mRNA causes alternative splicing.
Collapse
Affiliation(s)
- D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | |
Collapse
|
2
|
Zhdanov DD, Gladilina YA, Blinova VG, Abramova AA, Shishparenok AN, Eliseeva DD. Induction of FoxP3 Pre-mRNA Alternative Splicing to Enhance the Suppressive Activity of Regulatory T Cells from Amyotrophic Lateral Sclerosis Patients. Biomedicines 2024; 12:1022. [PMID: 38790984 PMCID: PMC11117958 DOI: 10.3390/biomedicines12051022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Forkhead box protein 3 (FoxP3) is a key transcription factor responsible for the development, maturation, and function of regulatory T cells (Tregs). The FoxP3 pre-mRNA is subject to alternative splicing, resulting in the translation of multiple splice variants. We have shown that Tregs from patients with amyotrophic lateral sclerosis (ALS) have reduced expression of full-length (FL) FoxP3, while other truncated splice variants are expressed predominantly. A correlation was observed between the reduced number of Tregs in the peripheral blood of ALS patients, reduced total FoxP3 mRNA, and reduced mRNA of its FL splice variant. Induction of FL FoxP3 was achieved using splice-switching oligonucleotides capable of base pairing with FoxP3 pre-mRNA and selectively modulating the inclusion of exons 2 and 7 in the mature mRNA. Selective expression of FL FoxP3 resulted in the induction of CD127low, CD152, and Helios-positive cells, while the cell markers CD4 and CD25 were not altered. Such Tregs had an increased proliferative activity and a higher frequency of cell divisions per day. The increased suppressive activity of Tregs with the induced FL FoxP3 splice variant was associated with the increased synthesis of the pro-apoptotic granzymes A and B, and perforin, IL-10, and IL-35, which are responsible for contact-independent suppression, and with the increased ability to suppress telomerase in target cells. The upregulation of Treg suppressive and proliferative activity using splice-switching oligonucleotides to induce the predominant expression of the FoxP3 FL variant is a promising approach for regenerative cell therapy in Treg-associated diseases.
Collapse
Affiliation(s)
- Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (V.G.B.); (A.A.A.); (A.N.S.)
- Department of Biochemistry, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (V.G.B.); (A.A.A.); (A.N.S.)
| | - Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (V.G.B.); (A.A.A.); (A.N.S.)
| | - Anna A. Abramova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (V.G.B.); (A.A.A.); (A.N.S.)
- Research Center of Neurology, Volokolamskoe Shosse, 80, 125367 Moscow, Russia;
| | - Anastasia N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (V.G.B.); (A.A.A.); (A.N.S.)
| | - Daria D. Eliseeva
- Research Center of Neurology, Volokolamskoe Shosse, 80, 125367 Moscow, Russia;
| |
Collapse
|
3
|
Blinova VG, Gladilina YA, Abramova AA, Eliseeva DD, Vtorushina VV, Shishparenok AN, Zhdanov DD. Modulation of Suppressive Activity and Proliferation of Human Regulatory T Cells by Splice-Switching Oligonucleotides Targeting FoxP3 Pre-mRNA. Cells 2023; 13:77. [PMID: 38201281 PMCID: PMC10777989 DOI: 10.3390/cells13010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The maturation, development, and function of regulatory T cells (Tregs) are under the control of the crucial transcription factor Forkhead Box Protein 3 (FoxP3). Through alternative splicing, the human FoxP3 gene produces four different splice variants: a full-length variant (FL) and truncated variants with deletions of each of exons 2 (∆2 variant) or 7 (∆7 variant) or a deletion of both exons (∆2∆7 variant). Their involvement in the biology of Tregs as well as their association with autoimmune diseases remains to be clarified. The aim of this work was to induce a single FoxP3 splice variant in human Tregs by splice switching oligonucleotides and to monitor their phenotype and proliferative and suppressive activity. We demonstrated that Tregs from peripheral blood from patients with multiple sclerosis preferentially expressed truncated splice variants, while the FL variant was the major variant in healthy donors. Tregs with induced expression of truncated FoxP3 splice variants demonstrated lower suppressive activity than those expressing FL variants. Reduced suppression was associated with the decreased expression of Treg-associated suppressive surface molecules and the production of cytokines. The deletion of exons 2 and/or 7 also reduced the cell proliferation rate. The results of this study show an association between FoxP3 splice variants and Treg function and proliferation. The modulation of Treg suppressive activity by the induction of the FoxP3 FL variant can become a promising strategy for regenerative immunotherapy.
Collapse
Affiliation(s)
- Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (V.G.B.); (Y.A.G.); (A.A.A.); (A.N.S.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (V.G.B.); (Y.A.G.); (A.A.A.); (A.N.S.)
| | - Anna A. Abramova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (V.G.B.); (Y.A.G.); (A.A.A.); (A.N.S.)
- Research Center of Neurology, Volokolamskoe Shosse, 80, 125367 Moscow, Russia;
| | - Daria D. Eliseeva
- Research Center of Neurology, Volokolamskoe Shosse, 80, 125367 Moscow, Russia;
| | - Valentina V. Vtorushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of the Russian Federation, Laboratory of Clinical Immunology, Academician Oparin st. 4, 117997 Moscow, Russia;
| | - Anastasia N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (V.G.B.); (Y.A.G.); (A.A.A.); (A.N.S.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia; (V.G.B.); (Y.A.G.); (A.A.A.); (A.N.S.)
- Department of Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| |
Collapse
|
4
|
Voser TM, Hayton JB, Prebble DW, Jin J, Grant G, Ekins MG, Carroll AR. Amphiphilic Polyamine α-Synuclein Aggregation Inhibitors from the Sponge Aaptos lobata. JOURNAL OF NATURAL PRODUCTS 2023; 86:475-481. [PMID: 36795859 DOI: 10.1021/acs.jnatprod.2c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bioassay-guided investigation of the sponge Aaptos lobata resulted in the isolation and identification of two new amphiphilic polyamines, aaptolobamines A (1) and B (2). Their structures were determined through analysis of NMR and MS data. MS analysis also indicated that A. lobata contained a complex mixture of aaptolobamine homologues. Both aaptolobamines A (1) and B (2) show broad bioactivity, including cytotoxicity against cancer cell lines, moderate antimicrobial activity against a methicillin-resistant strain of Staphylococcus aureus, and weak activity against a Pseudomonas aeruginosa strain. The mixtures of aaptolobamine homologues were shown to contain compounds that bind to the Parkinson's disease associated amyloid protein α-synuclein and inhibit its aggregation.
Collapse
Affiliation(s)
- Tanja M Voser
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Joshua B Hayton
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Dale W Prebble
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Ju Jin
- School of Pharmacy and Medical Sciences, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Gary Grant
- School of Pharmacy and Medical Sciences, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | | | - Anthony R Carroll
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| |
Collapse
|
5
|
Anticancer Cytotoxic Activity of Bispidine Derivatives Associated with the Increasing Catabolism of Polyamines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123872. [PMID: 35744995 PMCID: PMC9229528 DOI: 10.3390/molecules27123872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/21/2022]
Abstract
Polyamine (PA) catabolism is often reduced in cancer cells. The activation of this metabolic pathway produces cytotoxic substances that might cause apoptosis in cancer cells. Chemical compounds able to restore the level of PA catabolism in tumors could become potential antineoplastic agents. The search for activators of PA catabolism among bicyclononan-9-ones is a promising strategy for drug development. The aim of the study was to evaluate the biological activity of new 3,7-diazabicyclo[3.3.1]nonan-9-one derivatives that have antiproliferative properties by accelerating PA catabolism. Eight bispidine derivatives were synthetized and demonstrated the ability to activate PA catabolism in regenerating rat liver homogenates. However, only three of them demonstrated a potent ability to decrease the viability of cancer cells in the MTT assay. Compounds 4c and 4e could induce apoptosis more effectively in cancer HepG2 cells rather than in normal WI-38 fibroblasts. The lead compound 4e could significantly enhance cancer cell death, but not the death of normal cells if PAs were added to the cell culture media. Thus, the bispidine derivative 4e 3-(3-methoxypropyl)-7-[3-(1H-piperazin-1-yl)ethyl]-3,7-diazabicyclo[3.3.1]nonane could become a potential anticancer drug substance whose mechanism relies on the induction of PA catabolism in cancer cells.
Collapse
|