1
|
Patamia V, Saccullo E, Fuochi V, Magaletti F, Trecarichi L, Furnari S, Furneri PM, Barbera V, Floresta G, Rescifina A. Developing Advanced Antibacterial Alginic Acid Biomaterials through Dual Functionalization. ACS APPLIED BIO MATERIALS 2024; 7:6932-6940. [PMID: 39253768 DOI: 10.1021/acsabm.4c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
This paper delves into the intersection of biomaterials and antibacterial agents, highlighting the importance of alginic acid-based biomaterials. We investigate enhancing antibacterial properties by functionalizing alginic acid with an ionic liquid and a potent chelating agent, tris(hydroxypyridinone) (THP). Initial functionalization with the ionic liquid markedly improves the material's antibacterial efficacy. Subsequent functionalization with THP further enhances this activity, reducing the minimum inhibitory concentration from 6 to 3 mg/mL. Notably, the newly developed dual-functionalized materials exhibit no cytotoxic effects at the concentrations tested, underscoring their potential for safe and effective antibacterial applications. These findings highlight the promising role of dual-functionalized alginic acid biomaterials in developing advanced antibacterial treatments.
Collapse
Affiliation(s)
- Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125 Bari, Italy
| | - Erika Saccullo
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Federica Magaletti
- Department of Chemistry, Materials and Chemical Engineering (Giulio Natta), Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Luca Trecarichi
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Salvatore Furnari
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Pio Maria Furneri
- Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Vincenzina Barbera
- Department of Chemistry, Materials and Chemical Engineering (Giulio Natta), Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125 Bari, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
2
|
Lungulescu EM, Fierascu RC, Stan MS, Fierascu I, Radoi EA, Banciu CA, Gabor RA, Fistos T, Marutescu L, Popa M, Voinea IC, Voicu SN, Nicula NO. Gamma Radiation-Mediated Synthesis of Antimicrobial Polyurethane Foam/Silver Nanoparticles. Polymers (Basel) 2024; 16:1369. [PMID: 38794562 PMCID: PMC11125184 DOI: 10.3390/polym16101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Nosocomial infections represent a major threat within healthcare systems worldwide, underscoring the critical need for materials with antimicrobial properties. This study presents the development of polyurethane foam embedded with silver nanoparticles (PUF/AgNPs) using a rapid, eco-friendly, in situ radiochemical synthesis method. The nanocomposites were characterized by UV-vis and FTIR spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray technique (SEM/EDX), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile and compression strengths, antimicrobial activity, and foam toxicity tests. The resulting PUF/AgNPs demonstrated prolonged stability (over 12 months) and good dispersion of AgNPs. Also, the samples presented higher levels of hardness compared to samples without AgNPs (deformation of 1682 µm for V1 vs. 4307 µm for V0, under a 5 N force), tensile and compression strength of 1.80 MPa and 0.34 Mpa, respectively. Importantly, they exhibited potent antimicrobial activity against a broad range of bacteria (including Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, and Enterococcus faecalis) and a fungal mixture (no fungal growth on the sample surface was observed after 28 days of exposure). Furthermore, these materials were non-toxic to human keratinocytes, which kept their specific morphology after 24 h of incubation, highlighting their potential for safe use in biomedical applications. We envision promising applications for PUF/AgNPs in hospital bed mattresses and antimicrobial mats, offering a practical strategy to reduce nosocomial infections and enhance patient safety within healthcare facilities.
Collapse
Affiliation(s)
- Eduard-Marius Lungulescu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (E.-M.L.); (E.A.R.); (C.A.B.)
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (I.F.); (R.A.G.); (T.F.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.N.V.)
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (I.F.); (R.A.G.); (T.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Elena Andreea Radoi
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (E.-M.L.); (E.A.R.); (C.A.B.)
| | - Cristina Antonela Banciu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (E.-M.L.); (E.A.R.); (C.A.B.)
| | - Raluca Augusta Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (I.F.); (R.A.G.); (T.F.)
| | - Toma Fistos
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (R.C.F.); (I.F.); (R.A.G.); (T.F.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Luminita Marutescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (L.M.); (M.P.)
| | - Marcela Popa
- Department of Microbiology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (L.M.); (M.P.)
| | - Ionela C. Voinea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.N.V.)
| | - Sorina N. Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.S.S.); (S.N.V.)
| | - Nicoleta-Oana Nicula
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (E.-M.L.); (E.A.R.); (C.A.B.)
| |
Collapse
|
3
|
Yu P, Yang R, Cen C. Evaluation of the prevention effect of high-quality nursing quality control in disinfection supply center on nosocomial infection. Medicine (Baltimore) 2024; 103:e35459. [PMID: 38215132 PMCID: PMC10783402 DOI: 10.1097/md.0000000000035459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/12/2023] [Indexed: 01/14/2024] Open
Abstract
To explore the application effect of high-quality nursing quality control in disinfection supply center. The control group consisted of 1850 medical devices managed using the conventional quality control mode from January 2021 to December 2021, while the observation group consisted of 1900 medical devices managed using the high-quality nursing quality control mode from January 2022 to December 2022. The qualified rates of equipment cleaning, sterilization, and packaging were analyzed in both the observation and control groups. The occurrence of nosocomial infections in 2021 and 2022 were compared, and the changes in the Beck-Srivaatava stress scale index (BSSI) and Symptom Checklist-90 scores of the staff before and after implementing the high-quality nursing quality control mode were analyzed. The qualified rate of equipment cleaning, sterilization, and packaging in the observation group were 99.08%, 99.73%, and 99.78%, respectively, which were significantly higher than those in the control group (P < .05). The incidence of nosocomial infections in interventional and surgical cases in 2022 was 0.79%, which was significantly lower than that in 2021 (P < .05). The BSSI score of female staff was (68.76 ± 7.81) points, which was higher than that of male staff (P < .05). After the implementation of the high-quality nursing quality control mode, the BSSI score of the staff was (47.76 ± 9.12) points, which was significantly lower than that before implementation (P < .05). After the implementation of the high-quality nursing quality control mode, the staff's Symptom Checklist-90 scores for somatization, compulsion, interpersonal sensitivity, depression, hostility, and paranoia were (1.28 ± 0.29), (1.53 ± 0.24), (1.50 ± 0.21), (1.46 ± 0.32), (1.44 ± 0.26), and (1.38 ± 0.30) points, respectively, showing a decrease compared to before implementation (P < .05). The high-quality nursing quality control mode has great application value in the disinfection supply center. It can effectively improve the qualified rates of equipment cleaning, sterilization, and packaging, prevent nosocomial infections and improve the working pressure and psychological health of staff.
Collapse
Affiliation(s)
- Ping Yu
- Central Sterile Supply Department, Renhe Hospital Affiliated to China Three Gorges University, Yichang, Hubei, China
| | - Rong Yang
- Department of Nursing, Renhe Hospital Affiliated to China Three Gorges University, Yichang, Hubei, China
| | - Changfei Cen
- Department of Critical Care Medicine, Renhe Hospital Affiliated to China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
4
|
Chen X, Sun D, He Z, Kang S, Miao Y, Li Y. Ferrite bismuth-based nanomaterials: From ferroelectric and piezoelectric properties to nanomedicine applications. Colloids Surf B Biointerfaces 2024; 233:113642. [PMID: 37995631 DOI: 10.1016/j.colsurfb.2023.113642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Bismuth ferrite (BiFeO3), a perovskite-type oxide, possesses unique morphology and multiferroicity, rendering it highly versatile for various applications. Recent investigations have demonstrated that BiFeO3 exhibits enhanced Fenton-like and photocatalytic behaviors, coupled with its piezoelectric/ferroelectric properties. BiFeO3 can catalytically generate highly oxidative reactive oxygen species (ROS) when exposed to hydrogen peroxide or light irradiation. Consequently, bismuth ferrite-based nanomaterials have emerged as promising candidates for various biomedical applications. However, the precise fabrication of BiFeO3-based materials with controllable features and applications in diverse biomedical scenarios remains a formidable challenge. In this review, we initially summarize the Fenton reaction property, ferroelectric, and piezoelectric properties of BiFeO3. We further survey the current methodologies for synthesizing BiFeO3 nanomaterials with diverse morphologies. Subsequently, we explore the effects of element doping and heterojunction formation on enhancing the photocatalytic activity of BiFeO3, focusing on microstructural, electronic band structure, and modification approaches. Additionally, we provide an overview of the recent advancements of BiFeO3-based nanomaterials in biomedicine. Finally, we discuss the prevailing obstacles and prospects of BiFeO3 for biomedical applications, offering valuable insights and recommendations for forthcoming research endeavors.
Collapse
Affiliation(s)
- Xingzhou Chen
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Di Sun
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital & Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, China
| | - Zongyan He
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shifei Kang
- Institute of Photochemistry and Photofunctional Materials (IPPM), University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|