1
|
Guan T, Wang L, Hu M, Zhu Q, Cai L, Wang Y, Xie P, Feng J, Wang H, Li J. Effects of chronic abamectin stress on growth performance, digestive capacity, and defense systems in red swamp crayfish (Procambarus clarkii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106861. [PMID: 38340542 DOI: 10.1016/j.aquatox.2024.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Abamectin is a globally used pesticide, which is one of 16-member macrocyclic lactones compound. As an environmental contaminant, pesticide residues pose a great threat to the health and survival of aquatic animals. Procambarus clarkii is one of the most important economic aquatic animals in China. It is necessary to explore the toxic mechanism of abamectin to P. clarkii. In this study, the toxic mechanism of abamectin to P. clarkii was investigated by 0, 3 and 6 μg/L abamectin stress for 28 days. The digestive-, antioxidant- and immune- related enzymes activities, genes expression levels, and histological observations were analytical indicators of growth performance, digestive capacity, and defense systems. The results in this study showed that with abamectin concentration increasing, the growth of P. clarkii was stunted significantly, and the mortality rate increased significantly. With exposure time and abamectin concentration increasing, the expression levels of related genes, the activities of digestive-, antioxidant-, and immune- related enzymes decreased ultimately. Moreover, through histological observation, it was found that with abamectin concentration increasing, the hepatopancreas, muscle, and intestine were damaged. As elucidated by the results, once abamectin exists in the environment for a long time, even low doses will threaten to healthy growth and survival of P. clarkii. This study explored the potential toxicity and the toxic mechanism of abamectin to P. clarkii, and provides a theoretical basis for further study on the toxicity of pesticides to aquatic animals.
Collapse
Affiliation(s)
- Tianyu Guan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Long Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Meng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Qianqian Zhu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Lin Cai
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Yurui Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Motta CM, Rosati L, Cretì P, Montinari MR, Denre P, Simoniello P, Fogliano C, Scudiero R, Avallone B. Histopathological effects of long-term exposure to realistic concentrations of cadmium in the hepatopancreas of Sparus aurata juveniles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106858. [PMID: 38325058 DOI: 10.1016/j.aquatox.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
In recent decades, cadmium has emerged as an environmental stressor in aquatic ecosystems due to its persistence and toxicity. It can enter water bodies from various natural and anthropogenic sources and, once introduced into aquatic systems, can accumulate in sediments and biota, leading to bioaccumulation and biomagnification in the food chain. For this reason, the effects of cadmium on aquatic life remain an area of ongoing research and concern. In this paper, a multidisciplinary approach was used to assess the effects of long-term exposure to an environmental concentration on the hepatopancreas of farmed juveniles of sea bream, Sparus aurata. After determining metal uptake, metallothionein production was assessed to gain insight into the organism's defence response. The effects were also assessed by histological and ultrastructural analyses. The results indicate that cadmium accumulates in the hepatopancreas at significant concentrations, inducing structural and functional damage. Despite the parallel increase in metallothioneins, fibrosis, alterations in carbohydrate distribution and endocrine disruption were also observed. These effects would decrease animal fitness although it did not translate into high mortality or reduced growth. This could depend on the fact that the animals were farmed, protected from the pressure deriving from having to search for food or escape from predators. Not to be underestimated is the return to humans, as this species is edible. Understanding the behaviour of cadmium in aquatic systems, its effects at different trophic levels and the potential risks to human health from the consumption of contaminated seafood would therefore be essential for informed environmental management and policy decisions.
Collapse
Affiliation(s)
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Patrizia Cretì
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Maria Rosa Montinari
- Chair of History of Medicine, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Pabitra Denre
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Duarte RMF, Malta SM, Mascarenhas FNADP, Bittar VP, Borges AL, Teixeira RR, Zanon RG, Vieira CU, Espindola FS. Chronic exposure to 2,2'-azobis-2-amidinopropane that induces intestinal damage and oxidative stress in larvae of Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104388. [PMID: 38355029 DOI: 10.1016/j.etap.2024.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/28/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Embryonic development is exceptionally susceptible to pathogenic, chemistry and mechanical stressors as they can disrupt homeostasis, causing damage and impacted viability. Oxidative stress has the capacity to induce alterations and reshape the environment. However, the specific impacts of these oxidative stress-induced damages in the gastrointestinal tract of Drosophila melanogaster larvae have been minimally explored. This study used 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH), a free radical generator, to investigate oxidative stress effects on Drosophila embryo development. The results showed that exposing Drosophila eggs to 30 mM AAPH during 1st instar larva, 2nd instar larva and 3rd instar larva stages significantly reduced hatching rates and pupal generation. It increased the activity of antioxidant enzymes and increased oxidative damage to proteins and MDA content, indicating severe oxidative stress. Morphological changes in 3rd individuals included decreased brush borders in enterocytes and reduced lipid vacuoles in trophocytes, essential fat bodies for insect metabolism. Immunostaining revealed elevated cleaved caspase 3, an apoptosis marker. This evidence validates the impact of oxidative stress toxicity and cell apoptosis following exposure, offering insights into comprehending the chemically induced effects of oxidative stress by AAPH on animal development.
Collapse
Affiliation(s)
| | - Serena Mares Malta
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | | | - Vinicius Prado Bittar
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Ana Luiza Borges
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | | | - Renata Graciele Zanon
- Institute of Biomedicals Science, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Carlos Ueira Vieira
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | | |
Collapse
|
4
|
Fogliano C, Carotenuto R, Agnisola C, Simoniello P, Karam M, Manfredonia C, Avallone B, Motta CM. Benzodiazepine Delorazepam Induces Locomotory Hyperactivity and Alterations in Pedal Mucus Texture in the Freshwater Gastropod Planorbarius corneus. Int J Mol Sci 2023; 24:17070. [PMID: 38069390 PMCID: PMC10706940 DOI: 10.3390/ijms242317070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Benzodiazepines, psychotropic drugs, are ubiquitous in the aquatic environment due to over-consumption and inefficient removal by sewage treatment plants. Bioaccumulation with consequent behavioral and physiological effects has been reported in many aquatic species. However, the responses are species-specific and still poorly understood. To improve the knowledge, we exposed the freshwater snail Planorbarius corneus to 1, 5, or 10 µg/L of delorazepam, the most widely consumed benzodiazepine in Italy. Conventional behavioral tests were used to assess the effects on locomotor and feeding behavior. Histological and biochemical analyses were also performed to detect possible changes in the structure and composition of the foot mucus and glands. The results show a paradoxical response with reduced feeding activity and locomotor hyperactivity. Pedal mucus was altered in texture but not in composition, becoming particularly rich in fibrous collagen-like material, and a significant change in the protein composition was highlighted in the foot. In conclusion, exposure to delorazepam induces disinhibited behavior in Planorbarius corneus, potentially increasing the risk of predation, and an increase in mucus protein production, which, together with reduced feeding activity, would severely compromise energy resources.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, 80143 Naples, Italy;
| | - Myriam Karam
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Claudia Manfredonia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| |
Collapse
|
5
|
Fogliano C, Carotenuto R, Rusciano G, Sasso A, Motta CM, Agnisola C, Avallone B. Structural and functional damage to the retina and skeletal muscle in Xenopus laevis embryos exposed to the commonly used psychotropic benzodiazepine delorazepam. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104235. [PMID: 37481049 DOI: 10.1016/j.etap.2023.104235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Benzodiazepines, psychotropic drugs, are among the most frequently found pharmaceuticals in aquatic matrices. An increasing number of studies are reporting their harmful effects on adults' behaviour and physiology, while little information is available regarding developing organisms exposed since early stages. Improper activation of GABA receptors during embryonic development is likely to induce relevant consequences on the morphogenesis and, at later stages, on behaviour. This study investigated the negative effects of three increasing concentrations of delorazepam on Xenopus laevis retinal and skeletal muscle morphogenesis. Morphological and ultrastructural investigations were correlated with gene expression, while Raman spectroscopy highlighted the main biochemical components affected. Conventional phototactic response and orientation in the magnetic field were assessed as indicators of proper interaction between sensory organs and the nervous system. Results confirm the profound impact of delorazepam on development and return an alarming picture of the amphibians' survival potentialities in a benzodiazepine-contaminated environment.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giulia Rusciano
- Department of Physics, University of Naples Federico II, Naples, Italy
| | - Antonio Sasso
- Department of Physics, University of Naples Federico II, Naples, Italy
| | | | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Kochetkov N, Smorodinskaya S, Vatlin A, Nikiforov-Nikishin D, Nikiforov-Nikishin A, Danilenko V, Anastasia K, Reznikova D, Grishina Y, Antipov S, Marsova M. Ability of Lactobacillus brevis 47f to Alleviate the Toxic Effects of Imidacloprid Low Concentration on the Histological Parameters and Cytokine Profile of Zebrafish ( Danio rerio). Int J Mol Sci 2023; 24:12290. [PMID: 37569666 PMCID: PMC10418720 DOI: 10.3390/ijms241512290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
In the present article, the possible mitigation of the toxic effect of imidacloprid low-concentration chronic exposure on Danio rerio by the probiotic strain Lactobacillus brevis 47f (1 × 108 CFU/g) was examined. It was found that even sublethal concentration (2500 µg/L) could lead to the death of some fish during the 60-day chronic experiment. However, the use of Lactobacillus brevis 47f partially reduced the toxic effects, resulting in an increased survival rate and a significant reduction of morphohistological lesions in the intestines and kidneys of Danio rerio. The kidneys were found to be the most susceptible organ to toxic exposure, showing significant disturbances. Calculation of the histopathological index, measurement of morphometric parameters, and analysis of principal components revealed the most significant parameters affected by the combined action of imidacloprid and Lactobacillus brevis 47f. This effect of imidacloprid and the probiotic strain had a multidirectional influence on various pro/anti-inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-8). Therefore, the results suggest the possibility of further studying the probiotic strain Lactobacillus brevis 47f as a strain that reduces the toxic effects of xenobiotics. Additionally, the study established the possibility of using imidacloprid as a model toxicant to assess the detoxification ability of probiotics on the kidney and gastrointestinal tract of fish.
Collapse
Affiliation(s)
- Nikita Kochetkov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| | - Svetlana Smorodinskaya
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| | - Aleksey Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
| | - Dmitry Nikiforov-Nikishin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| | - Alexei Nikiforov-Nikishin
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| | - Valery Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
| | - Klimuk Anastasia
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| | - Diana Reznikova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutsky Lane 9, 141700 Dolgoprudny, Russia
| | - Yelena Grishina
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
| | - Sergei Antipov
- Department of Biophysics and Biotechnology, Voronezh State University, University Square, 1, 394063 Voronezh, Russia;
| | - Maria Marsova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
| |
Collapse
|
7
|
Fogliano C, Carotenuto R, Panzuto R, Spennato V, De Bonis S, Simoniello P, Raggio A, Avallone B, Agnisola C, Motta CM. Behavioral alterations and gills damage in Mytilus galloprovincialis exposed to an environmental concentration of delorazepam. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104030. [PMID: 36455838 DOI: 10.1016/j.etap.2022.104030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Psychoactive compounds, and benzodiazepines (BZPs) in particular, represent an important class of emerging pollutants due to their large (ab)use and high resistance to degradation. Nowadays it is known that sewage treatment does not completely eliminate these substances and, therefore, BZPs and their metabolites reach concern levels in most aquatic environments all over Europe, ranging from µg/L to ng/L. In this study, we investigated the effects of delorazepam on Mytilus galloprovincialis, a model organism in toxicity testing and a key species in coastal marine ecosystems. Given its psychoactive activity, the study primarily addressed discovering the effects on behavior, by conventional valve opening and closure tests. Possible cytotoxic activity was also investigated by analyzing valve abductor muscles, gills histology, and correlated oxygen consumption. Results demonstrate negative effects on mussel behavior, interference with metabolism, and alteration of gill morphology and protein content. In conclusion, delorazepam confirms its toxicity to aquatic environments, highlighting the possibility that BZDs can ultimately affect the structure of the food web and the functions of the coastal ecosystems.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Raffaele Panzuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Valentina Spennato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Salvatore De Bonis
- Regional Agency for Environmental Protection of Latium (Arpa Lazio), Via Saredo, 00173 Rome, Italy
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, 80133 Naples, Italy
| | - Anja Raggio
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|