1
|
Anwer M, Bhaliya K, Munn A, Wei MQ. Bacterial ghosts: A breakthrough approach to cancer vaccination. Biomed Pharmacother 2024; 182:117766. [PMID: 39700871 DOI: 10.1016/j.biopha.2024.117766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Cancer is a devastating disease worldwide with high mortality rates and is a foremost concern for society. Immunotherapy has emerged as a promising strategy for treating cancer, harnessing the power of immune system to recognize and kill tumor cells. Bacterial ghosts (BGs), a novel platform in cancer vaccination, are suitable for personalized and effective immunotherapeutic interventions. BG are empty bacterial cell envelopes generated through a controlled lysis process, leaving behind empty but structurally intact cell membranes. BGs have been used as vaccine adjuvants and vaccine delivery vehicles worldwide. They possess inherent immunogenicity, enabling them to be used for controlled release and targeted drug delivery. Recently, the potential of BGs has been explored for tumor inhibition, making them suitable carrier vehicles. This review highlights cancer immunotherapy, methods of BG preparation, characterization of BGs, the interaction of BGs with the immune system, and research progress on BG-based cancer vaccines with future insights.
Collapse
Affiliation(s)
- Muneera Anwer
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia.
| | - Krupa Bhaliya
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia
| | - Alan Munn
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia
| | - Ming Q Wei
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia
| |
Collapse
|
2
|
Salasar Moghaddam F, Tabibian M, Absalan M, Tavoosidana G, Ghahremani MH, Tabatabaei N, Abdolhosseini M, Shafiee Sabet M, Motevaseli E. Comparative analysis of Escherichia coli Nissle 1917 ghosts quality: a study of two chemical methods. Arch Microbiol 2024; 206:386. [PMID: 39190149 DOI: 10.1007/s00203-024-04095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/28/2024]
Abstract
The gram-negative bacterium Escherichia coli Nissle 1917 (EcN) has long been recognized for its therapeutic potential in treating various intestinal diseases. Bacterial ghosts (BGs) are empty shells of non-living bacterial cells that demonstrate enormous potential for medicinal applications. Genetic and chemical techniques can create these BGs. In the current study, we produced Escherichia coli Nissle 1917 ghosts (EcNGs) for the first time using benzoic acid (BA) and sodium hydroxide (SH). BA is a feeble acidic chemical that enhances gram-negative bacteria's external membrane permeability, reduces energy production, and decreases internal pH. SH has shown success in producing BGs from some gram-negative and gram-positive organisms. This research aims to produce EcNGs using the minimum inhibitory concentration (MIC) of SH and BA, specifically 3.125 mg/mL. We assessed the bacterial quality of the BGs produced using quantitative PCR (qPCR) and Bradford protein assays. Field emission scanning electron microscopy (FE-SEM) showed the three-dimensional structure of EcNGs. The study confirmed the presence of tunnel-like pores on the outer surface, indicating the preservation of cell membrane integrity. Importantly, this investigation introduces BA as a novel chemical inducer of EcNGs, suggesting its potential alongside SH for efficient EcNG formation.
Collapse
Affiliation(s)
- Fahimeh Salasar Moghaddam
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | - Moloud Absalan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrollah Tabatabaei
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoreh Abdolhosseini
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Shafiee Sabet
- Department of Neurology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zhou J, Yu R, Ma Y, Wang Q, Liu Q, Zhang Y, Liu X. A bacterial ghost vaccine against Aeromonas salmonicida infection in turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109711. [PMID: 38901685 DOI: 10.1016/j.fsi.2024.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Aeromonas salmonicida is one of the most prevalent pathogens that causes huge economic losses to aquaculture. Effective vaccination is the first choice for preventing infection. Bacterial ghost (BG), an empty bacterial shell devoid of cytoplasm, is a promising vaccine antigen with distinct advantages. Herein, we established strategies for producing a substantial yield of A. salmonicida ghost (ASG) and investigated the immune-protective properties of it. As a result, 2.84 mg/ml NaOH was discovered to be capable of inducing considerable amounts of ASG. Furthermore, the ASG vaccine elicited adaptive immunity in turbots after rapid activation of innate immunity. Even though formalin-killed cells (FKC) produced a few more antibodies than ASG, ASG ultimately provided a much stronger immune protection effect because it strengthened cellular immunity, with a relative percentage survival (RPS) of 50.1 % compared to FKC. These findings demonstrated that ASG effectively activated cell-mediated immunity, which helped get rid of microorganisms inside cells. Therefore, this study presented novel perspectives for future research on furunculosis vaccine products based on ASG as an antigen.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ruofan Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
4
|
Jia Z, Liu R, Chang Q, Zhou X, De X, Yang Z, Li Y, Zhang C, Wang F, Ge J. Proof of concept in utilizing the peptidoglycan skeleton of pathogenic bacteria as antigen delivery platform for enhanced immune response. Int J Biol Macromol 2024; 264:130591. [PMID: 38437938 DOI: 10.1016/j.ijbiomac.2024.130591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Subunit vaccines are becoming increasingly important because of their safety and effectiveness. However, subunit vaccines often exhibit limited immunogenicity, necessitating the use of suitable adjuvants to elicit robust immune responses. In this study, we demonstrated for the first time that pathogenic bacteria can be prepared into a purified peptidoglycan skeleton without nucleic acids and proteins, presenting bacterium-like particles (pBLP). Our results showed that the peptidoglycan skeletons screened from four pathogens could activate Toll-like receptor1/2 receptors better than bacterium-like particles from Lactococcus lactis in macrophages. We observed that pBLP was safe in mouse models of multiple ages. Furthermore, pBLP improved the performance of two commercial vaccines in vivo. We confirmed that pBLP successfully loaded antigens onto the surface and proved to be an effective antigen delivery platform with enhanced antibody titers, antibody avidity, balanced subclass distribution, and mucosal immunity. These results indicate that the peptidoglycan skeleton of pathogenic bacteria represents a new strategy for developing subunit vaccine delivery systems.
Collapse
Affiliation(s)
- Zheng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Runhang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150086, China
| | - Qingru Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Xinyao Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Xinqi De
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Zaixing Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Yifan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Chuankun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150086, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China; Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China.
| |
Collapse
|
5
|
Zong R, Ruan H, Liu C, Fan S, Li J. Bacteria and Bacterial Components as Natural Bio-Nanocarriers for Drug and Gene Delivery Systems in Cancer Therapy. Pharmaceutics 2023; 15:2490. [PMID: 37896250 PMCID: PMC10610331 DOI: 10.3390/pharmaceutics15102490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteria and bacterial components possess multifunctional properties, making them attractive natural bio-nanocarriers for cancer diagnosis and targeted treatment. The inherent tropic and motile nature of bacteria allows them to grow and colonize in hypoxic tumor microenvironments more readily than conventional therapeutic agents and other nanomedicines. However, concerns over biosafety, limited antitumor efficiency, and unclear tumor-targeting mechanisms have restricted the clinical translation and application of natural bio-nanocarriers based on bacteria and bacterial components. Fortunately, bacterial therapies combined with engineering strategies and nanotechnology may be able to reverse a number of challenges for bacterial/bacterial component-based cancer biotherapies. Meanwhile, the combined strategies tend to enhance the versatility of bionanoplasmic nanoplatforms to improve biosafety and inhibit tumorigenesis and metastasis. This review summarizes the advantages and challenges of bacteria and bacterial components in cancer therapy, outlines combinatorial strategies for nanocarriers and bacterial/bacterial components, and discusses their clinical applications.
Collapse
Affiliation(s)
| | | | | | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
6
|
Sodium hydroxide-induced Weissella kimchii ghosts (WKGs) as immunostimulant. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|