1
|
Sun LL, Sun SN, Cao XF, Yao SQ. An integrated biorefinery strategy for Eucalyptus fractionation and co-producing glucose, furfural, and lignin based on deep eutectic solvent/cyclopentyl methyl ether system. Carbohydr Polym 2024; 343:122420. [PMID: 39174113 DOI: 10.1016/j.carbpol.2024.122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 08/24/2024]
Abstract
A novel biphasic system containing water-soluble deep eutectic solvent (DES) and cyclopentyl methyl ether (CPME) was developed to treat Eucalyptus for furfural production, extracting lignin and enhancing cellulose enzymatic hydrolysis. Herein effect of DES type, water content in DES, temperature and time on furfural yield in water-soluble DES/CPME pretreatment process was firstly evaluated. A maximum furfural yield of 80.6 % was attained in 10 min at 150 °C with choline chloride (ChCl)/citric acid monohydrate (CAM)/CPME system containing 30 wt% water and 2.5 wt% SnCl4·5H2O, which was higher than that obtained from ChCl/CAM/CPME system without water (55.5 %) and H2O/CPME system (49.7 %). These results demonstrated that the water-soluble DES/CPME system was a powerful method enhancing the furfural production. Under the optimal pretreatment conditions, the delignification and glucose yield were reached to 72.7 % and 94.3 %, respectively. The extracted lignin showed low molecular weight and β-aryl-ether was obviously cleaved. Additionally, water-soluble DES/CPME pretreatment led to a significant removal of hemicelluloses (100.0 %) and lignin (72.7 %) and introduced morphological changes on cell walls, especially from the cell corner (CC) and secondary wall (SW) layers. Overall, this work proposed a practical one-step fractionation strategy for co-producing furfural, lignin and fermentable sugar, providing a way to biorefinery.
Collapse
Affiliation(s)
- Li-Li Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Shuang-Quan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
2
|
Song J, Yuan H, Mai Y, Hu Y, Qiu Q, Wu T, Lin X. Enhancing 5-Hydroxymethylfurfural Production from Fructose Using Triethylbenzylammonium Chloride-Based Acidic Deep Eutectic Solvents: Optimization and Acidity Impact. Chempluschem 2024:e202400544. [PMID: 39364634 DOI: 10.1002/cplu.202400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
5-Hydroxymethylfurfural (5-HMF) is an important biomass-based platform compound that links biomass feedstocks with petrochemical refinery products. In this work, we developed a novel approach using triethylbenzylammonium chloride (TEBAC)-based acidic deep eutectic solvents (ADESs) to synthesize 5-HMF through the dehydration of fructose. Our approach demonstrates significant improvements in both 5-HMF yield and process efficiency compared to conventional solvent systems. Under optimal experimental conditions (90 °C, 4.5 h), a maximum 5-HMF yield of 97.77±3.20 % was achieved at a TEBAC:acetic acid ratio of 2 : 3 with 1 wt % fructose loading, which represents a notable advancement over other methods. Notably, our system inhibits the formation of by-products such as levulinic acid (LA) and formic acid (FA), which are commonly detected in other dehydration processes. Additionally, higher 5-HMF yields of 76.67±0.33 % and 73.51±1.14 % were achieved with 10 wt % and 20 wt % fructose loadings, respectively, further highlighting the scalability of the process. The acidity of ADESs was found to significantly affect the dehydration rate and yield, as demonstrated through Hammett's acidity function analysis. The key innovation of our study lies in the strategic selection of hydrogen bond donors and acceptors in the DES, enabling both high efficiency and selectivity in 5-HMF production. These findings provide a promising pathway for large-scale biomass conversion with reduced by-product formation.
Collapse
Affiliation(s)
- Jiuhang Song
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Haotian Yuan
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Yinglin Mai
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Yinan Hu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Quanyuan Qiu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Ting Wu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Xiaoqing Lin
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
3
|
Huynh QT, Huang Q, Leu SY, Lin YC, Liao CS, Chang KL. Combination of deep eutectic solvent and functionalized metal-organic frameworks as a green process for the production of 5-hydroxymethylfurfural and furfural from sugars. CHEMOSPHERE 2023; 342:140126. [PMID: 37690555 DOI: 10.1016/j.chemosphere.2023.140126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Biomass is an abundant and sustainable resource that can be converted into energy and chemicals. Therefore, the development of efficient methods for the conversion of biomass into platform intermediates is crucial. In this study, the one-pot conversion of sugars into 5-hydroxymethylfurfural (HMF) and furfural was achieved using the metal-organic framework combined with metal ions [MIL-101(Cr)] as a high-activity catalyst, and a deep eutectic solvent (choline chloride and lactic acid) as a green solvent. The optimal temperature, time, amount of catalyst used, and amount of deep eutectic solvent used were all determined. The highest HMF yield of 49.74% and furfural yield of 55.90% were obtained. The recyclability of the catalysts and deep eutectic solvent was also investigated. After three reaction runs, the HMF yield was still nearly 30.00%. Finally, the MIL-101(Cr) catalytic system was selected to study the kinetic mechanism underlying the conversion of glucose into HMF.
Collapse
Affiliation(s)
- Quang Tam Huynh
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Qing Huang
- Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Chien-Sen Liao
- Department of Biological Science & Technology, I Shou University, Kaohsiung, 84001, Taiwan
| | - Ken-Lin Chang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
| |
Collapse
|
4
|
Aranha DJ, Gogate PR. A Review on Green and Efficient Synthesis of 5-Hydroxymethylfurfural (HMF) and 2,5-Furandicarboxylic Acid (FDCA) from Sustainable Biomass. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Danwyn J. Aranha
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai-400019, India
| | - Parag R. Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai-400019, India
| |
Collapse
|