1
|
Muntiu A, Moresi F, Vincenzoni F, Rossetti DV, Iavarone F, Messana I, Castagnola M, La Rocca G, Mazzucchi E, Olivi A, Urbani A, Sabatino G, Desiderio C. Proteomic Profiling of Pre- and Post-Surgery Saliva of Glioblastoma Patients: A Pilot Investigation. Int J Mol Sci 2024; 25:12984. [PMID: 39684695 DOI: 10.3390/ijms252312984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor characterized by a high infiltration capability and recurrence rate. Early diagnosis is crucial to improve the prognosis and to personalize the therapeutic approach. This research explored, by LC-MS proteomic analysis after proteolytic digestion, the molecular profile of pre- and post-operative saliva pools from newly diagnosed (ND) GBM patients by comparing different times of collection and tumor recurrence (R). CYCS, PRDX2, RAB1C, PSMB1, KLK6, TMOD3, PAI2, PLBD1, CAST, and AHNAK, all involved in processes of tumor invasiveness and chemo- and radio-resistance, were found to depict the pre-surgery saliva of both ND and R GBM. PADI4 and CRYAB proteins, identified among the most abundant proteins exclusive of ND GBM pre-surgery saliva and classified as proteins elevated in glioma, could have a potential role as disease biomarkers. Selected panels of S100 proteins were found to potentially differentiate ND from R GBM patient saliva. TPD52 and IGKV3, exclusively identified in R GBM saliva, could be additionally distinctive of tumor relapse. Among the proteins identified in all pools, label-free relative quantitation showed statistically significant different levels of TXN, SERPINB5, FABP5, and S100A11 proteins between the pools. All of these proteins showed higher levels in both ND_ and R_T0 pre-surgery saliva with respect to CTRL and different modulation after surgery or chemo-radiotherapy combined treatment, suggesting a role as a potential panel of GBM predictive and prognostic biomarkers. These results highlight and confirm that saliva, a biofluid featured for an easily accessible and low invasiveness collection, is a promising source of GBM biomarkers, showing new potential opportunities for the development of targeted therapies and diagnostic tools.
Collapse
Affiliation(s)
- Alexandra Muntiu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Fabiana Moresi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy
| | - Federica Vincenzoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Diana Valeria Rossetti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168 Rome, Italy
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168 Rome, Italy
| | - Massimo Castagnola
- Centro Europeo di Ricerca sul Cervello-IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Giuseppe La Rocca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Edoardo Mazzucchi
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy
| | - Alessandro Olivi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Andrea Urbani
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Giovanni Sabatino
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168 Rome, Italy
| |
Collapse
|
2
|
Alberti G, Sánchez-López CM, Marcilla A, Barone R, Caruso Bavisotto C, Graziano F, Conway de Macario E, Macario AJL, Bucchieri F, Cappello F, Campanella C, Rappa F. Hsp70 and Calcitonin Receptor Protein in Extracellular Vesicles from Glioblastoma Multiforme: Biomarkers with Putative Roles in Carcinogenesis and Potential for Differentiating Tumor Types. Int J Mol Sci 2024; 25:3415. [PMID: 38542389 PMCID: PMC10969952 DOI: 10.3390/ijms25063415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a malignancy of bad prognosis, and advances in early detection and treatment are needed. GBM is heterogenous, with varieties differing in malignancy within a tumor of a patient and between patients. Means are needed to distinguish these GMB forms, so that specific strategies can be deployed for patient management. We study the participation of the chaperone system (CS) in carcinogenesis. The CS is dynamic, with its members moving around the body in extracellular vesicles (EVs) and interacting with components of other physiological systems in health and disease, including GBM. Here, we describe the finding of high amounts of Hsp70 (HSPA1A) and the calcitonin receptor protein (CTR) in EVs in patients with GBM. We present a standardized protocol for collecting, purifying, and characterizing EVs carrying Hsp70 and CTR in plasma-derived EVs from patients with GBM. EVs from GBM patients were obtained just before tumor ablative surgery (T0) and 7 days afterwards (T1); Hsp70 was highly elevated at T0 and less so at T1, and CTR was greatly increased at T0 and reduced to below normal values at T1. Our results encourage further research to assess Hsp70 and CTR as biomarkers for differentiating tumor forms and to determine their roles in GBM carcinogenesis.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Christian M. Sánchez-López
- Área de Parasitología, Departamento Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de València, 46100 Burjassot, Spain; (C.M.S.-L.); (A.M.)
- Joint Unit of Endocrinology, Nutrition and Clinical Dietetics, Instituto de Investigación Sanitaria-La Fe, 46026 Valencia, Spain
| | - Antonio Marcilla
- Área de Parasitología, Departamento Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de València, 46100 Burjassot, Spain; (C.M.S.-L.); (A.M.)
- Joint Unit of Endocrinology, Nutrition and Clinical Dietetics, Instituto de Investigación Sanitaria-La Fe, 46026 Valencia, Spain
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Francesca Graziano
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, 95122 Catania, Italy;
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Claudia Campanella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
- The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| |
Collapse
|
3
|
Li N, Xue W, Han Y, Zhu B, Wu J, Xu Z. Defect Engineering in GO Membranes - Tailoring Size and Oxidation Degree of Nanosheet for Enhanced Pore Channels. Chem Asian J 2024:e202301065. [PMID: 38329385 DOI: 10.1002/asia.202301065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Graphene Oxide (GO) membrane has been extensively applied in the field of water purification and membrane separation processes. While the solute molecule transport in GO membranes encompasses interlayer channels, edge defects, and in-plane crack-like holes, the significance of edge defects or crack-like pores in ultrathin membranes is often overlooked. In our study, we focused on the construction of short-range channel GO membranes with varied defect structures by modulating the transverse size of the porous nanosheets. GO nanosheets with different sizes were procured through high-energy γ-irradiation combined with centrifugation. Notably, the large-sized porous GO nanosheets (L-pGO) exhibit a consistent structure, and numerous in-plane defects. In contrast, the smaller counterparts (S-pGO) present a fewer in-plane defects. The performance metrics revealed that L-pGO exhibited a water flux of 849.25 L m-2 h-1 bar-1 , while S-pGO demonstrated nearly 100 % dye rejection capacity. These findings underscore the potential of defect engineering as a powerful strategy to enhance the efficiency of two-dimensional membranes.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Weihao Xue
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Yu Han
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Bo Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Jinman Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Binshuixi Road, Tianjin, 300387, P. R. China
| |
Collapse
|
4
|
Alvarez-Rivera E, Ortiz-Hernández EJ, Lugo E, Lozada-Reyes LM, Boukli NM. Oncogenic Proteomics Approaches for Translational Research and HIV-Associated Malignancy Mechanisms. Proteomes 2023; 11:22. [PMID: 37489388 PMCID: PMC10366845 DOI: 10.3390/proteomes11030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
Recent advances in the field of proteomics have allowed extensive insights into the molecular regulations of the cell proteome. Specifically, this allows researchers to dissect a multitude of signaling arrays while targeting for the discovery of novel protein signatures. These approaches based on data mining are becoming increasingly powerful for identifying both potential disease mechanisms as well as indicators for disease progression and overall survival predictive and prognostic molecular markers for cancer. Furthermore, mass spectrometry (MS) integrations satisfy the ongoing demand for in-depth biomarker validation. For the purpose of this review, we will highlight the current developments based on MS sensitivity, to place quantitative proteomics into clinical settings and provide a perspective to integrate proteomics data for future applications in cancer precision medicine. We will also discuss malignancies associated with oncogenic viruses such as Acquire Immunodeficiency Syndrome (AIDS) and suggest novel mechanisms behind this phenomenon. Human Immunodeficiency Virus type-1 (HIV-1) proteins are known to be oncogenic per se, to induce oxidative and endoplasmic reticulum stresses, and to be released from the infected or expressing cells. HIV-1 proteins can act alone or in collaboration with other known oncoproteins, which cause the bulk of malignancies in people living with HIV-1 on ART.
Collapse
Affiliation(s)
- Eduardo Alvarez-Rivera
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | - Emanuel J. Ortiz-Hernández
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | - Elyette Lugo
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| | | | - Nawal M. Boukli
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe, School of Medicine, Bayamón, PR 00960, USA
| |
Collapse
|
5
|
Editorial to Special Issue "Glioblastoma: Recapitulating the Key Breakthroughs and Future Perspective". Int J Mol Sci 2023; 24:ijms24032548. [PMID: 36768870 PMCID: PMC9917091 DOI: 10.3390/ijms24032548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma (GBM) remains the most common and aggressive malignant primary brain tumor [...].
Collapse
|
6
|
Tikhonova MA, Zhanaeva SY, Shvaikovskaya AA, Olkov NM, Aftanas LI, Danilenko KV. Neurospecific Molecules Measured in Periphery in Humans: How Do They Correlate with the Brain Levels? A Systematic Review. Int J Mol Sci 2022; 23:ijms23169193. [PMID: 36012459 PMCID: PMC9409387 DOI: 10.3390/ijms23169193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022] Open
Abstract
Human brain state is usually estimated by brain-specific substances in peripheral tissues, but, for most analytes, a concordance between their content in the brain and periphery is unclear. In this systematic review, we summarized the investigated correlations in humans. PubMed was searched up to June 2022. We included studies measuring the same endogenous neurospecific analytes in the central nervous system and periphery in the same subjects. Not eligible were studies of cerebrospinal fluid, with significant blood–brain barrier disruption, of molecules with well-established blood-periphery concordance or measured in brain tumors. Seventeen studies were eligible. Four studies did not report on correlation and four revealed no significant correlation. Four molecules were examined twice. For BDNF, there was no correlation in both studies. For phenylalanine, glutamine, and glutamate, results were contradictory. Strong correlations were found for free tryptophan (r = 0.97) and translocator protein (r = 0.90). Thus, only for three molecules was there some certainty. BDNF in plasma or serum does not reflect brain content, whereas free tryptophan (in plasma) and translocator protein (in blood cells) can serve as peripheral biomarkers. We expect a breakthrough in the field with advanced in vivo metabolomic analyses, neuroimaging techniques, and blood assays for exosomes of brain origin.
Collapse
|