1
|
Gantner BN, Palma FR, Pandkar MR, Sakiyama MJ, Arango D, DeNicola GM, Gomes AP, Bonini MG. Metabolism and epigenetics: drivers of tumor cell plasticity and treatment outcomes. Trends Cancer 2024; 10:992-1008. [PMID: 39277448 DOI: 10.1016/j.trecan.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
Emerging evidence indicates that metabolism not only is a source of energy and biomaterials for cell division but also acts as a driver of cancer cell plasticity and treatment resistance. This is because metabolic changes lead to remodeling of chromatin and reprogramming of gene expression patterns, furthering tumor cell phenotypic transitions. Therefore, the crosstalk between metabolism and epigenetics seems to hold immense potential for the discovery of novel therapeutic targets for various aggressive tumors. Here, we highlight recent discoveries supporting the concept that the cooperation between metabolism and epigenetics enables cancer to overcome mounting treatment-induced pressures. We discuss how specific metabolites contribute to cancer cell resilience and provide perspective on how simultaneously targeting these key forces could produce synergistic therapeutic effects to improve treatment outcomes.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Flavio R Palma
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Madhura R Pandkar
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Marcelo J Sakiyama
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Marcelo G Bonini
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Hartl L, ten Brink MS, Aberson HL, Koster J, Zwijnenburg DA, Duitman J, Bijlsma MF, Spek CA. Hypoxia Abrogates Tumor-Suppressive Activities of C/EBPδ in Pancreatic Cancer. Int J Mol Sci 2024; 25:9449. [PMID: 39273396 PMCID: PMC11394991 DOI: 10.3390/ijms25179449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a low 5-year survival rate of only 13%. Despite intense research efforts, PDAC remains insufficiently understood. In part, this is attributed to opposing effects of key players being unraveled, including the stroma but also molecules that act in a context-dependent manner. One such molecule is the transcription factor C/EBPδ, where we recently showed that C/EBPδ exerts tumor-suppressive effects in PDAC cells in vitro. To better understand the role of C/EBPδ in different contexts and the development of PDAC, we here build on these findings and assess the effect of C/EBPδ in a PDAC model in mice. We establish that the lack of oxygen in vivo-hypoxia-counteracts the tumor-suppressive effects of C/EBPδ, and identify a reciprocal feedback loop between C/EBPδ and HIF-1α. RNA sequencing of C/EBPδ-induced cells under hypoxia also suggests that the growth-limiting effects of C/EBPδ decrease with oxygen tension. Consequently, in vitro proliferation assays reveal that the tumor-suppressive activities of C/EBPδ are abrogated due to hypoxia. This study demonstrates the importance of considering major physiological parameters in preclinical approaches.
Collapse
Affiliation(s)
- Leonie Hartl
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Marieke S. ten Brink
- Center for Experimental and Molecular Medicine, Division of Infectious Diseases, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Hella L. Aberson
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Jan Koster
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Danny A. Zwijnenburg
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - JanWillem Duitman
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, The Netherlands
| | - Maarten F. Bijlsma
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - C. Arnold Spek
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
Tan WY, Nagabhyrava S, Ang-Olson O, Das P, Ladel L, Sailo B, He L, Sharma A, Ahuja N. Translation of Epigenetics in Cell-Free DNA Liquid Biopsy Technology and Precision Oncology. Curr Issues Mol Biol 2024; 46:6533-6565. [PMID: 39057032 PMCID: PMC11276574 DOI: 10.3390/cimb46070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Technological advancements in cell-free DNA (cfDNA) liquid biopsy have triggered exponential growth in numerous clinical applications. While cfDNA-based liquid biopsy has made significant strides in personalizing cancer treatment, the exploration and translation of epigenetics in liquid biopsy to clinical practice is still nascent. This comprehensive review seeks to provide a broad yet in-depth narrative of the present status of epigenetics in cfDNA liquid biopsy and its associated challenges. It highlights the potential of epigenetics in cfDNA liquid biopsy technologies with the hopes of enhancing its clinical translation. The momentum of cfDNA liquid biopsy technologies in recent years has propelled epigenetics to the forefront of molecular biology. We have only begun to reveal the true potential of epigenetics in both our understanding of disease and leveraging epigenetics in the diagnostic and therapeutic domains. Recent clinical applications of epigenetics-based cfDNA liquid biopsy revolve around DNA methylation in screening and early cancer detection, leading to the development of multi-cancer early detection tests and the capability to pinpoint tissues of origin. The clinical application of epigenetics in cfDNA liquid biopsy in minimal residual disease, monitoring, and surveillance are at their initial stages. A notable advancement in fragmentation patterns analysis has created a new avenue for epigenetic biomarkers. However, the widespread application of cfDNA liquid biopsy has many challenges, including biomarker sensitivity, specificity, logistics including infrastructure and personnel, data processing, handling, results interpretation, accessibility, and cost effectiveness. Exploring and translating epigenetics in cfDNA liquid biopsy technology can transform our understanding and perception of cancer prevention and management. cfDNA liquid biopsy has great potential in precision oncology to revolutionize conventional ways of early cancer detection, monitoring residual disease, treatment response, surveillance, and drug development. Adapting the implementation of liquid biopsy workflow to the local policy worldwide and developing point-of-care testing holds great potential to overcome global cancer disparity and improve cancer outcomes.
Collapse
Affiliation(s)
- Wan Ying Tan
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
- Hematology & Oncology, Neag Comprehensive Cancer Center, UConn Health, Farmington, CT 06030, USA
| | | | - Olivia Ang-Olson
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Paromita Das
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Luisa Ladel
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
| | - Bethsebie Sailo
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Linda He
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Anup Sharma
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Nita Ahuja
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520-8000, USA
- Biological and Biomedical Sciences Program (BBS), Yale University, New Haven, CT 06520-8084, USA
| |
Collapse
|
4
|
Zabransky DJ, Chhabra Y, Fane ME, Kartalia E, Leatherman JM, Hüser L, Zimmerman JW, Delitto D, Han S, Armstrong TD, Charmsaz S, Guinn S, Pramod S, Thompson ED, Hughes SJ, O'Connell J, Egan JM, Jaffee EM, Weeraratna AT. Fibroblasts in the Aged Pancreas Drive Pancreatic Cancer Progression. Cancer Res 2024; 84:1221-1236. [PMID: 38330147 DOI: 10.1158/0008-5472.can-24-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Pancreatic cancer is more prevalent in older individuals and often carries a poorer prognosis for them. The relationship between the microenvironment and pancreatic cancer is multifactorial, and age-related changes in nonmalignant cells in the tumor microenvironment may play a key role in promoting cancer aggressiveness. Because fibroblasts have profound impacts on pancreatic cancer progression, we investigated whether age-related changes in pancreatic fibroblasts influence cancer growth and metastasis. Proteomics analysis revealed that aged fibroblasts secrete different factors than young fibroblasts, including increased growth/differentiation factor 15 (GDF-15). Treating young mice with GDF-15 enhanced tumor growth, whereas aged GDF-15 knockout mice showed reduced tumor growth. GDF-15 activated AKT, rendering tumors sensitive to AKT inhibition in an aged but not young microenvironment. These data provide evidence for how aging alters pancreatic fibroblasts and promotes tumor progression, providing potential therapeutic targets and avenues for studying pancreatic cancer while accounting for the effects of aging. SIGNIFICANCE Aged pancreatic fibroblasts secrete GDF-15 and activate AKT signaling to promote pancreatic cancer growth, highlighting the critical role of aging-mediated changes in the pancreatic cancer microenvironment in driving tumor progression. See related commentary by Isaacson et al., p. 1185.
Collapse
Affiliation(s)
- Daniel J Zabransky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yash Chhabra
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Mitchell E Fane
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Fox Chase Cancer Center, Cancer Signaling and Microenvironment Program, Philadelphia, Pennsylvania
| | - Emma Kartalia
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James M Leatherman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura Hüser
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jacquelyn W Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel Delitto
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Song Han
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Todd D Armstrong
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Soren Charmsaz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Samantha Guinn
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sneha Pramod
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elizabeth D Thompson
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven J Hughes
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Jennifer O'Connell
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Johns Hopkins Cancer Convergence Institute, Baltimore, Maryland
| | - Ashani T Weeraratna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
5
|
Salu P, Reindl KM. Advancements in Preclinical Models of Pancreatic Cancer. Pancreas 2024; 53:e205-e220. [PMID: 38206758 PMCID: PMC10842038 DOI: 10.1097/mpa.0000000000002277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
ABSTRACT Pancreatic cancer remains one of the deadliest of all cancer types with a 5-year overall survival rate of just 12%. Preclinical models available for understanding the disease pathophysiology have evolved significantly in recent years. Traditionally, commercially available 2-dimensional cell lines were developed to investigate mechanisms underlying tumorigenesis, metastasis, and drug resistance. However, these cells grow as monolayer cultures that lack heterogeneity and do not effectively represent tumor biology. Developing patient-derived xenografts and genetically engineered mouse models led to increased cellular heterogeneity, molecular diversity, and tissues that histologically represent the original patient tumors. However, these models are relatively expensive and very timing consuming. More recently, the advancement of fast and inexpensive in vitro models that better mimic disease conditions in vivo are on the rise. Three-dimensional cultures like organoids and spheroids have gained popularity and are considered to recapitulate complex disease characteristics. In addition, computational genomics, transcriptomics, and metabolomic models are being developed to simulate pancreatic cancer progression and predict better treatment strategies. Herein, we review the challenges associated with pancreatic cancer research and available analytical models. We suggest that an integrated approach toward using these models may allow for developing new strategies for pancreatic cancer precision medicine.
Collapse
Affiliation(s)
- Philip Salu
- From the Department of Biological Sciences, North Dakota State University, Fargo, ND
| | | |
Collapse
|
6
|
Effendi WI, Nagano T. Epigenetics Approaches toward Precision Medicine for Idiopathic Pulmonary Fibrosis: Focus on DNA Methylation. Biomedicines 2023; 11:biomedicines11041047. [PMID: 37189665 DOI: 10.3390/biomedicines11041047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Genetic information is not transmitted solely by DNA but by the epigenetics process. Epigenetics describes molecular missing link pathways that could bridge the gap between the genetic background and environmental risk factors that contribute to the pathogenesis of pulmonary fibrosis. Specific epigenetic patterns, especially DNA methylation, histone modifications, long non-coding, and microRNA (miRNAs), affect the endophenotypes underlying the development of idiopathic pulmonary fibrosis (IPF). Among all the epigenetic marks, DNA methylation modifications have been the most widely studied in IPF. This review summarizes the current knowledge concerning DNA methylation changes in pulmonary fibrosis and demonstrates a promising novel epigenetics-based precision medicine.
Collapse
|
7
|
Lee W, Song G, Bae H. Glucotropaeolin Promotes Apoptosis by Calcium Dysregulation and Attenuates Cell Migration with FOXM1 Suppression in Pancreatic Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12020257. [PMID: 36829815 PMCID: PMC9952507 DOI: 10.3390/antiox12020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has naturally aggressive characteristics including postoperative recurrence, resistance to conventional treatment, and metastasis. Surgical resection with chemotherapeutic agents has been conducted as the major treatment for PDAC. However, surgical treatment is ineffective in the case of advanced cancer, and conventional adjuvant chemotherapy, including gemcitabine and 5-fluorouracil, show low effectiveness due to the high drug resistance of PDAC to this type of treatment. Therefore, the development of innovative therapeutic drugs is crucial to solving the present limitation of conventional drugs. Glucotropaeolin (GT) is a glucosinolate that can be isolated from the Brassicaceae family. GT has exhibited a growth-inhibitory effect against liver and colon cancer cells; however, there is no study regarding the anticancer effect of GT on PDAC. In our study, we determined the antiproliferative effect of GT in PANC-1 and MIA PaCa-2, representative of PDAC. We revealed the intracellular mechanisms underlying the anticancer effect of GT with respect to cell viability, reactive oxygen species (ROS) accumulation, alteration of mitochondrial membrane potential (MMP), calcium dysregulation, cell migration, and the induction of apoptosis. Moreover, GT regulated the signaling pathways related to anticancer in PDAC cells. Finally, the silencing of the forkhead box protein M, a key factor regulating PDAC progression, contributes to the anticancer property of GT in terms of the induction of apoptosis and cell migration. Therefore, GT may be a potential therapeutic drug against PDAC.
Collapse
Affiliation(s)
- Woonghee Lee
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Correspondence: (G.S.); (H.B.); Tel.: +82-2-3290-3881 (G.S.); +82-31-201-2686 (H.B.)
| | - Hyocheol Bae
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
- Correspondence: (G.S.); (H.B.); Tel.: +82-2-3290-3881 (G.S.); +82-31-201-2686 (H.B.)
| |
Collapse
|
8
|
SAKURAI KOUHEI, NAGAI AKIRA, ANDO TATSUYA, SAKAI YASUHIRO, IDETA YUKA, HAYASHI YUICHIRO, BABA JUNICHI, MITSUDO KENJI, AKITA MASAHARU, YAMAMICHI NOBUTAKE, FUJIGAKI HIDETSUGU, KATO TAKU, ITO HIROYASU. Cytomorphology and Gene Expression Signatures of Anchorage-independent Aggregations of Oral Cancer Cells. Cancer Genomics Proteomics 2023; 20:64-74. [PMID: 36581338 PMCID: PMC9806669 DOI: 10.21873/cgp.20365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIM Cancer cells with high anchorage independence can survive and proliferate in the absence of adhesion to the extracellular matrix. Under anchorage-independent conditions, cancer cells adhere to each other and form aggregates to overcome various stresses. In this study, we investigated the cytomorphology and gene expression signatures of oral cancer cell aggregates. MATERIALS AND METHODS Two oral cancer-derived cell lines, SAS and HSC-3 cells, were cultured in a low-attachment plate and their cytomorphologies were observed. The transcriptome between attached and detached SAS cells was examined using gene expression microarrays. Subsequently, gene enrichment analysis and Ingenuity Pathway Analysis were performed. Gene expression changes under attached, detached, and re-attached conditions were measured via RT-qPCR. RESULTS While SAS cells formed multiple round-shaped aggregates, HSC-3 cells, which had lower anchorage independence, did not form aggregates efficiently. Each SAS cell in the aggregate was linked by desmosomes and tight junctions. Comparative transcriptomic analysis revealed 1,698 differentially expressed genes (DEGs) between attached and detached SAS cells. The DEGs were associated with various functions and processes, including cell adhesion. Moreover, under the detached condition, the expression of some epithelial genes (DSC3, DSP, CLDN1 and OCLN) were up-regulated. The changes in both cytomorphology and epithelial gene expression under the detached condition overall returned to their original ones when cells re-attached. CONCLUSION The results suggest specific cytomorphological and gene expression changes in oral cancer cell aggregates. Our findings provide insights into the mechanisms underlying anchorage-independent oral cancer cell aggregation and reveal previously unknown potential diagnostic and therapeutic molecules.
Collapse
Affiliation(s)
- KOUHEI SAKURAI
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, Aichi, Japan
| | - AKIRA NAGAI
- Student Researcher Program, School of Medicine, Fujita Health University, Aichi, Japan
| | - TATSUYA ANDO
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, Aichi, Japan
| | - YASUHIRO SAKAI
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, Aichi, Japan
| | - YUKA IDETA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - YUICHIRO HAYASHI
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan,Department of Oral and Maxillofacial Surgery, Shonan Kamakura General Hospital, Kanagawa, Japan
| | - JUNICHI BABA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan,Department of Oral and Maxillofacial Surgery, Saiseikai Yokohamashi Nanbu Hospital, Kanagawa, Japan
| | - KENJI MITSUDO
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - MASAHARU AKITA
- Department of Nutrition and Dietetics, School of Family and Consumer Sciences, Kamakura Women’s University, Kanagawa, Japan
| | - NOBUTAKE YAMAMICHI
- Center for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan,Department of Gastroenterology, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - HIDETSUGU FUJIGAKI
- Department of Advanced Diagnostic System Development, Graduate School of Health Sciences, Fujita Health University, Aichi, Japan
| | - TAKU KATO
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, Aichi, Japan
| | - HIROYASU ITO
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, Aichi, Japan
| |
Collapse
|
9
|
The Metastatic Process through the Eyes of Epigenetic Regulation: A Promising Horizon for Cancer Therapy. Int J Mol Sci 2022; 23:ijms232415446. [PMID: 36555088 PMCID: PMC9778637 DOI: 10.3390/ijms232415446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Genetic aberrations, including chromosomal rearrangements, loss or amplification of DNA, and point mutations, are major elements of cancer development [...].
Collapse
|
10
|
Di Giorgio C, Lupia A, Marchianò S, Bordoni M, Bellini R, Massa C, Urbani G, Roselli R, Moraca F, Sepe V, Catalanotti B, Morretta E, Monti MC, Biagioli M, Distrutti E, Zampella A, Fiorucci S. Repositioning Mifepristone as a Leukaemia Inhibitory Factor Receptor Antagonist for the Treatment of Pancreatic Adenocarcinoma. Cells 2022; 11:3482. [PMID: 36359879 PMCID: PMC9657739 DOI: 10.3390/cells11213482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2023] Open
Abstract
Pancreatic cancer is a leading cause of cancer mortality and is projected to become the second-most common cause of cancer mortality in the next decade. While gene-wide association studies and next generation sequencing analyses have identified molecular patterns and transcriptome profiles with prognostic relevance, therapeutic opportunities remain limited. Among the genes that are upregulated in pancreatic ductal adenocarcinomas (PDAC), the leukaemia inhibitory factor (LIF), a cytokine belonging to IL-6 family, has emerged as potential therapeutic candidate. LIF is aberrantly secreted by tumour cells and promotes tumour progression in pancreatic and other solid tumours through aberrant activation of the LIF receptor (LIFR) and downstream signalling that involves the JAK1/STAT3 pathway. Since there are no LIFR antagonists available for clinical use, we developed an in silico strategy to identify potential LIFR antagonists and drug repositioning with regard to LIFR antagonists. The results of these studies allowed the identification of mifepristone, a progesterone/glucocorticoid antagonist, clinically used in medical abortion, as a potent LIFR antagonist. Computational studies revealed that mifepristone binding partially overlapped the LIFR binding site. LIF and LIFR are expressed by human PDAC tissues and PDAC cell lines, including MIA-PaCa-2 and PANC-1 cells. Exposure of these cell lines to mifepristone reverses cell proliferation, migration and epithelial mesenchymal transition induced by LIF in a concentration-dependent manner. Mifepristone inhibits LIFR signalling and reverses STAT3 phosphorylation induced by LIF. Together, these data support the repositioning of mifepristone as a potential therapeutic agent in the treatment of PDAC.
Collapse
Affiliation(s)
- Cristina Di Giorgio
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Antonio Lupia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Campus Salvatore Venuta, Net4Science Srl, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Federica Moraca
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Campus Salvatore Venuta, Net4Science Srl, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, 84084 Salerno, Italy
| | | | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
11
|
Extracellular Vesicles Inhibit the Response of Pancreatic Ductal Adenocarcinoma Cells to Gemcitabine and TRAIL Treatment. Int J Mol Sci 2022; 23:ijms23147810. [PMID: 35887158 PMCID: PMC9317709 DOI: 10.3390/ijms23147810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic ductal adenocarcinoma remains an aggressive cancer with a low 5-year survival rate. Although gemcitabine has been a standard treatment for advanced pancreatic cancer, patients often develop resistance to this therapeutic. We have previously shown that treating pancreatic cancer cells in vitro with a combination of gemcitabine and the cytokine TRAIL significantly reduced both cell viability and survival. The data presented here demonstrate that this response to treatment is inhibited when cells are incubated with a conditioned medium derived from untreated cells. We show that this inhibition is specifically mediated by extracellular vesicles present in the conditioned medium, as seen by a significant decrease in apoptosis. Additionally, we further demonstrate that this effect can be reversed in the presence of GW4869, an inhibitor of exosome biogenesis and release. These results show that pancreatic cancer cell-derived extracellular vesicles can confer resistance to treatment with gemcitabine and TRAIL. The implications of these findings suggest that removal of EVs during treatment can improve the response of cells to gemcitabine and TRAIL treatment in vitro.
Collapse
|