1
|
Gupta R, Bhasin C, Joshi A, Agarwal N, Aggarwal A, Mudgal P. Transcriptome analysis of Berberine induced accelerated tail fin regeneration in Zebrafish larvae. Gene Expr Patterns 2025; 55:119390. [PMID: 39933633 DOI: 10.1016/j.gep.2025.119390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025]
Abstract
Humans have limited capacity to regenerate lost tissues post injury. The ability to modulate regenerative repair of tissues offers possibilities for restoring loss of tissue (organ) structure and function. Zebrafish (Danio rerio) larvae fin fold regeneration model is a simple system to study the process of regeneration and associated cellular mechanisms. Berberine, a plant alkaloid which is known to have wound healing properties shows potential to modulate regeneration. The present study aimed to explore the modulating influence of berberine on the signaling pathways involved in zebrafish larvae transected tail fin fold regeneration. Tail fin fold transection was performed on 3 dpf (days post fertilization) zebrafish larvae treated with Berberine (0.01%) and untreated control (System water (SW)). The larvae were observed under a microscope at 0, 1, 2, 3, 4, 5, hours post transection (hpt). RNA was extracted from Berberine treated and untreated (control) tail fin transected larvae at 4 hpt to perform RNA-seq analysis. PPI (protein-protein interaction) network, Shiny GO functional enrichment and topology analysis of DEGs (differentially expressed genes) was performed. Berberine treated larvae showed an accelerated regeneration growth in their transected tail fin by 4 hpt. Berberine induced accelerated regeneration is associated with the involvement of Insulin, IGF, stress response, jak-stat, cytokine, and cellular reprogramming signaling pathways as per RNA-seq analysis and String PPI network, and Shiny GO functional enrichment analysis of DEGs. Topological analysis using Cytohubba revealed tnfa, stat3, jak2b, igf1, jak1, hsp90aa1.1, stat1a, stat1b, bag3, hsp70, and fosl1a as the key Hub genes in the PPI network. The present study identifies the pathways and the Hub proteins involved in berberine induced accelerated regeneration process in zebrafish larvae.
Collapse
Affiliation(s)
- Radhika Gupta
- Department of Biochemistry, Daulat Ram College, University of Delhi, Delhi, 110007, India.
| | - Chitra Bhasin
- Department of Zoology, Daulat Ram College, University of Delhi, Delhi, 110007, India
| | | | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | | | - Padmshree Mudgal
- Department of Biochemistry, Daulat Ram College, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
2
|
Fan Y, Guo X, Tian Y, Li J, Xi H. Botulinum toxin type A inhibits the formation of hypertrophic scar through the JAK2/STAT3 pathway. BIOMOLECULES & BIOMEDICINE 2024; 25:249-258. [PMID: 39132968 PMCID: PMC11647250 DOI: 10.17305/bb.2024.10906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Hypertrophic scar (HS) is a fibrous proliferative disorder that occurs in the dermis after skin injury. Studies have confirmed that Botulinum toxin type A (BTA) is effective in scar prevention and treatment. However, the specific mechanism remains uncertain. Hypertrophic scar fibroblasts (HSFs) and normal skin fibroblasts (NSFs) from the skin tissues of HS patients were isolated and cultured. Western blot analysis was conducted to measure the expression of JAK2/STAT3 pathway-related proteins. HSFs were treated with the JAK2 inhibitor (AG490) or agonist (C-A1). The CCK-8 assay, EdU staining, scratch-wound assay and transwell assay were used to examine the biological properties of HSFs. Western blot, immunofluorescence, and Sirius red staining were used to assess the fibrosis of HSFs. Additionally, a mouse full-thickness wound model was constructed to investigate the role of BTA in wound healing. The results showed that the JAK2 and STAT3 phosphorylation levels were markedly increased in HS tissues and HSFs. AG490 treatment reduced cell viability, proliferation and migration capacity, and inhibited the fibrosis of HSFs, whereas C-A1 treatment had the opposite effect. BTA treatment inhibited the JAK2/STAT3 pathway. BTA reduced cell viability, proliferation and migration ability, and inhibited the fibrosis of HSFs, while C-A1 intervention weakened the impact of BTA. Meanwhile, BTA promoted wound healing and reduced collagen deposition in vivo. In conclusion, BTA inhibited the JAK2/STAT3 pathway, which in turn hindered the proliferation, migration and fibrosis of HSFs, and promoted wound healing in mice.
Collapse
Affiliation(s)
- Yan Fan
- Department of Paediatrics, Shanxi Medical University, Shanxi, China
- Department of Burns and Plastic Surgery, Children’s Hospital of Shanxi (Women Health Center of Shanxi), Shanxi, China
| | - Xuesong Guo
- Department of Burns and Plastic Surgery, Children’s Hospital of Shanxi (Women Health Center of Shanxi), Shanxi, China
| | - Yu Tian
- Department of Burns and Plastic Surgery, Children’s Hospital of Shanxi (Women Health Center of Shanxi), Shanxi, China
| | - Jie Li
- Department of Orthopedics, Children’s Hospital of Shanxi (Women Health Center of Shanxi), Shanxi, China
| | - Hongwei Xi
- Department of General Surgery, Children’s Hospital Affiliated to Shanxi Medical University, Shanxi, China
| |
Collapse
|
3
|
Chen Y, Zhang X, Lan S, Liang S, Zhang M, Zhang S, Liu Y, Li L, Wei H, Zhang S. Tert-Butylhydroquinone Mitigates T-2-Toxin-Induced Testicular Dysfunction by Targeting Oxidative Stress, Inflammation, and Apoptosis in Rats. TOXICS 2024; 12:335. [PMID: 38787114 PMCID: PMC11125982 DOI: 10.3390/toxics12050335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Tert-butylhydroquinone (tBHQ) has emerged as a promising candidate for mitigating the adverse effects of T-2-induced reproductive toxicity. The protective effects of tBHQ on rat sperm quality, testicular injury, apoptosis, and inflammation induced by T-2 toxin exposure were investigated. Histopathological examination of testicular tissues revealed severe damage in the T-2-treated group, characterized by disorganized germ cell arrangement, thinning of the convoluted seminiferous tubule walls, and significant cellular necrosis. However, tBHQ administration, either as a preventive or therapeutic measure, mitigated this structural damage. Image analysis confirmed an increase in the cross-sectional area and height of the convoluted seminiferous tubules in the tBHQ-treated groups compared to the T-2-treated group (p < 0.05), indicating tBHQ's efficacy in alleviating testicular damage. Additionally, tBHQ treatment significantly inhibited T-2-induced apoptosis of testicular tissue cells, as evidenced by the results showing reduced apoptotic cell counts and downregulation of the BAX/BCL2 ratio and caspase-3 expression (p < 0.05). tBHQ significantly increased the concentrations of the antioxidant factors SOD, CAT, TAC, and GSH-PX. Furthermore, tBHQ attenuated the inflammatory response induced by T-2 exposure, as indicated by the decreased mRNA expression of the proinflammatory cytokines Tnf, Il1, and Il10 in testicular tissue (p < 0.05). Additionally, tBHQ treatment alleviated the decline in serum testosterone induced by the T-2 and promoted testosterone synthesis gene expression, including for the genes 17β-HSD and Cyp11a1, in rat testes (p < 0.05). These findings underscore tBHQ's role as a therapeutic agent combatting T-2-induced reproductive toxicity, highlighting its antioxidative, anti-apoptotic, and anti-inflammatory properties. Further elucidation of tBHQ's mechanisms of action may offer novel strategies for preventing and treating reproductive disorders induced by environmental toxins.
Collapse
Affiliation(s)
- Yun Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (Y.C.); (S.L.); (S.L.); (M.Z.); (S.Z.); (Y.L.)
| | - Xinke Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.)
| | - Shanshan Lan
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (Y.C.); (S.L.); (S.L.); (M.Z.); (S.Z.); (Y.L.)
| | - Shuping Liang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (Y.C.); (S.L.); (S.L.); (M.Z.); (S.Z.); (Y.L.)
| | - Manyu Zhang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (Y.C.); (S.L.); (S.L.); (M.Z.); (S.Z.); (Y.L.)
| | - Shuang Zhang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (Y.C.); (S.L.); (S.L.); (M.Z.); (S.Z.); (Y.L.)
| | - Yijian Liu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (Y.C.); (S.L.); (S.L.); (M.Z.); (S.Z.); (Y.L.)
| | - Li Li
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.)
| | - Hengxi Wei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.)
| | - Shouquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (L.L.)
| |
Collapse
|
4
|
Udenze D, Trus I, Lipsit S, Napper S, Karniychuk U. Offspring affected with in utero Zika virus infection retain molecular footprints in the bone marrow and blood cells. Emerg Microbes Infect 2023; 12:2147021. [PMID: 36369716 PMCID: PMC9869997 DOI: 10.1080/22221751.2022.2147021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Congenital virus infections, for example cytomegalovirus and rubella virus infections, commonly affect the central nervous and hematological systems in fetuses and offspring. However, interactions between emerging congenital Zika virus and hematological system-bone marrow and blood-in fetuses and offspring are mainly unknown. Our overall goal was to determine whether silent in utero Zika virus infection can cause functional and molecular footprints in the bone marrow and blood of fetuses and offspring. We specifically focused on silent fetal infection because delayed health complications in initially asymptomatic offspring were previously demonstrated in animal and human studies. Using a well-established porcine model for Zika virus infection and a set of cellular and molecular experimental tools, we showed that silent in utero infection causes multi-organ inflammation in fetuses and local inflammation in the fetal bone marrow. In utero infection also caused footprints in the offspring bone marrow and PBMCs. These findings should be considered in a broader clinical context because of growing concerns about health sequelae in cohorts of children affected with congenital Zika virus infection in the Americas. Understanding virus-induced molecular mechanisms of immune activation and inflammation in fetuses may provide targets for early in utero interventions. Also, identifying early biomarkers of in utero-acquired immunopathology in offspring may help to alleviate long-term sequelae.
Collapse
Affiliation(s)
- Daniel Udenze
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
| | - Ivan Trus
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
- Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Sean Lipsit
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Uladzimir Karniychuk
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Kang XF, Lu XL, Bi CF, Hu XD, Li Y, Li JK, Yang LS, Liu J, Ma L, Zhang JF. Xuebijing injection protects sepsis induced myocardial injury by mediating TLR4/NF-κB/IKKα and JAK2/STAT3 signaling pathways. Aging (Albany NY) 2023; 15:8501-8517. [PMID: 37650558 PMCID: PMC10496990 DOI: 10.18632/aging.204990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Compelling evidence has demonstrated that Xuebijing (XBJ) exerted protective effects against SIMI. The aims of this study were to investigate whether TLR4/IKKα-mediated NF-κB and JAK2/STAT3 pathways were involved in XBJ's cardio-protection during sepsis and the mechanisms. METHODS In this study, rats were randomly assigned to three groups: Sham group; CLP group; XBJ group. Rats were treated with XBJ or sanitary saline after CLP. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1β, IL-6 and TNF-α in serum were measured using ELISA kits. Cardiomyocyte apoptosis were tested by TUNEL staining. The protein levels of Bax, Bcl-2, Bcl-xl, Cleaved-Caspase 3, Cleaved-Caspase 9, Cleaved-PARP, TLR4, p-NF-κB, p-IKKα, p-JAK2 and p-STAT3 in the myocardium were assayed by western blotting. And finally, immunofluorescence was used to assess the level of p-JAK2 and p-STAT3 in heart tissue. RESULTS The results of echocardiography, myocardial enzyme and HE test showed that XBJ could significantly improve SIMI. The IL-1β, IL-6 and TNF-α levels in the serum were markedly lower in the XBJ group than in the CLP group (p<0.05). TUNEL staining's results showed that XBJ ameliorated CLP-induced cardiomyocyte apoptosis. Meanwhile, XBJ downregulated the protein levels of Bax, Cleaved-Caspase 3, Cleaved-Caspase 9, Cleaved-PARP, TLR4, p-NF-κB, p-IKKα, p-JAK2 and p-STAT3, as well as upregulated the protein levels of Bcl-2, Bcl-xl (p <0.05). CONCLUSIONS In here, we observed that XBJ's cardioprotective advantages may be attributable to its ability to suppress inflammation and apoptosis via inhibiting the TLR4/ IKKα-mediated NF-κB and JAK2/STAT3 pathways during sepsis.
Collapse
Affiliation(s)
- Xiang-Fei Kang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Li Lu
- Laboratory Animal Centre, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Dong Hu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Ying Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jin-Kui Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|