1
|
He W, Zhang S, Qi Z, Liu W. Unveiling the potential of estrogen: Exploring its role in neuropsychiatric disorders and exercise intervention. Pharmacol Res 2024; 204:107201. [PMID: 38704108 DOI: 10.1016/j.phrs.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like β-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.
Collapse
Affiliation(s)
- Wenke He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Sen Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| | - Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| |
Collapse
|
2
|
Kamińska A, Lustofin S, Brzoskwinia M, Duliban M, Cyran-Gryboś J, Bilińska B, Hejmej A. Androgens and Notch signaling cooperate in seminiferous epithelium to regulate genes related to germ cell development and apoptosis. Reprod Biol 2024; 24:100878. [PMID: 38490111 DOI: 10.1016/j.repbio.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/17/2024]
Abstract
It was reported previously that in adult males disruption of both androgen and Notch signaling impairs spermatid development and germ cell survival in rodent seminiferous epithelium. To explain the molecular mechanisms of these effects, we focused on the interaction between Notch signaling and androgen receptor (AR) in Sertoli cells and investigate its role in the control of proteins involved in apical ectoplasmic specializations, actin remodeling during spermiogenesis, and induction of germ cell apoptosis. First, it was revealed that in rat testicular explants ex vivo both testosterone and Notch signaling modulate AR expression and cooperate in the regulation of spermiogenesis-related genes (Nectin2, Afdn, Arp2, Eps8) and apoptosis-related genes (Fasl, Fas, Bax, Bcl2). Further, altered expression of these genes was found following exposure of Sertoli cells (TM4 cell line) and germ cells (GC-2 cell line) to ligands for Notch receptors (Delta-like1, Delta-like4, and Jagged1) and/or Notch pathway inhibition. Finally, direct interactions of Notch effector, Hairy/enhancer-of-split related with YRPW motif protein 1, and the promoter of Ar gene or AR protein were revealed in TM4 Sertoli cells. In conclusion, Notch pathway activity in Sertoli and germ cells regulates genes related to germ cell development and apoptosis acting both directly and indirectly by influencing androgen signaling in Sertoli cells.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Sylwia Lustofin
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Małgorzata Brzoskwinia
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Michał Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Joanna Cyran-Gryboś
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
3
|
Song L, Chen H, Qiao D, Zhang B, Guo F, Zhang Y, Wang C, Li S, Cui H. ZIP9 mediates the effects of DHT on learning, memory and hippocampal synaptic plasticity of male Tfm and APP/PS1 mice. Front Endocrinol (Lausanne) 2023; 14:1139874. [PMID: 37305050 PMCID: PMC10248430 DOI: 10.3389/fendo.2023.1139874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Androgens are closely associated with functions of hippocampal learning, memory, and synaptic plasticity. The zinc transporter ZIP9 (SLC39A9) regulates androgen effects as a binding site distinct from the androgen receptor (AR). However, it is still unclear whether androgens regulate their functions in hippocampus of mice through ZIP9. Compared with wild-type (WT) male mice, we found that AR-deficient male testicular feminization mutation (Tfm) mice with low androgen levels had learning and memory impairment, decreased expression of hippocampal synaptic proteins PSD95, drebrin, SYP, and dendritic spine density. Dihydrotestosterone (DHT) supplementation significantly improved these conditions in Tfm male mice, although the beneficial effects disappeared after hippocampal ZIP9 knockdown. To explore the underlying mechanism, we first detected the phosphorylation of ERK1/2 and eIF4E in the hippocampus and found that it was lower in Tfm male mice than in WT male mice, it upregulated with DHT supplementation, and it downregulated after hippocampal ZIP9 knockdown. Next, we found that the expression of PSD95, p-ERK1/2, and p-eIF4E increased in DHT-treated mouse hippocampal neuron HT22 cells, and ZIP9 knockdown or overexpression inhibited or further enhanced these effects. Using the ERK1/2 specific inhibitor SCH772984 and eIF4E specific inhibitor eFT508, we found that DHT activated ERK1/2 through ZIP9, resulting in eIF4E phosphorylation, thus promoting PSD95 protein expression in HT22 cells. Finally, we found that ZIP9 mediated the effects of DHT on the expression of synaptic proteins PSD95, drebrin, SYP, and dendritic spine density in the hippocampus of APP/PS1 mice through the ERK1/2-eIF4E pathway and affected learning and memory. This study demonstrated that androgen affected learning and memory in mice through ZIP9, providing new experimental evidence for improvement in learning and memory in Alzheimer's disease with androgen supplementation.
Collapse
Affiliation(s)
- Leigang Song
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Sports Human Science, Hebei Sport University, Shijiazhuang, Hebei, China
| | - Huan Chen
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dan Qiao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bohan Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fangzhen Guo
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yizhou Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chang Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sha Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Gumułka M, Hrabia A, Rozenboim I. Alterations in gonadotropin, prolactin, androgen and estrogen receptor and steroidogenesis-associated gene expression in gander testes in relation to the annual period. Theriogenology 2023; 205:94-105. [PMID: 37105092 DOI: 10.1016/j.theriogenology.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Physiological mechanisms of seasonal changes in testicular function in birds are not fully elucidated. The balance between androgens and estrogens and testis sensitivity for gonadotropin and gonadal steroids are still unclear. The aim of the study was to examine: (1) the changes in circulating and intra-testicular steroid hormone levels and their relationship; (2) the mRNA expression of testicular gonadotropin, prolactin (PRL), progesterone (P4), androgen, and estrogen receptors, and (3) key steroidogenesis processes-related genes with immunofluorescent localization of aromatase in gander testes during the annual period. Testes from ganders (n = 25) in the first reproduction season were obtained at five breeding stages, i.e., prebreeding (PrB), peak of reproduction (PR), postbreeding (PoB), nonbreeding (NB), and onset of reproduction (OR). Males were kept under breeding conditions. It was found that plasma P4 levels decreased at the PoB and NB stages, whereas intra-testicular P4 was the highest in the NB stage. Intra-testicular estradiol (E2) levels were higher at the PoB and NB stages than the other stages, whereas testosterone (T) levels showed a nearly opposite pattern. The plasma estradiol-to-testosterone ratios were higher at the PrB, PoB and NB stages compared to other stages. The transcript abundances for luteinizing hormone receptor (LHR), PRL receptor (PRLR), estrogen receptor alpha (ERα), and estrogen receptor beta (ERβ) also change in testicular tissue during the annual period. Moreover, StAR mRNA expression was upregulated at the PoB and NB stages, and CYP11A1 transcript level was the highest at the PoB stage. Stage-dependent changes in the CYP19A1 mRNA and aromatase protein levels with higher abundances of transcript at PoB and NB stages and protein at the NB stage were observed. Localization and immunofluorescent signal intensity for aromatase also differed in relation to the examined stages. It may be suggested that differential E2 levels, as well as aromatase expression and localization across annual stages are responsible for the seasonal activation/inactivation stages of testis spermatogenesis in domestic ganders. These data strongly suggest a role of aromatase in the control of gander steroidogenesis as changes in this enzyme level are associated with alternation in gonadal steroid hormones. In addition, joint action with others hormones, like PRL and LH, seems to be important in the final effect of seasonal reproduction potential.
Collapse
Affiliation(s)
- Małgorzata Gumułka
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Kraków, Poland.
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Kraków, Poland
| | - Israel Rozenboim
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
5
|
Baltodano-Calle MJ, Onton-Díaz M, Gonzales GF. Androgens, brain and androgen deprivation therapy in paraphilic disorders: A narrative review. Andrologia 2022; 54:e14561. [PMID: 35995581 DOI: 10.1111/and.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/27/2022] Open
Abstract
Sexual delinquency is a global problem where those with paraphilic disorders, such as paedophiles, are more likely to commit and reoffend. Androgen deprivation therapy (ADT) has been suggested as a solution. The objective of this narrative review is to present current information on its risks, benefits and limitations as a treatment for paraphilias. The importance of testosterone in sexual function, the effect of its deficiency by age or by pharmacological treatment (anti-androgens, GnRH agonists and GnRH antagonists) and the effect of testosterone replacement therapy will be reviewed. The relationship between androgens, brain, sexual behaviour and pathophysiology of paraphilic disorders will also be explored. ADT reduces sexual urges, but has adverse effects and, because its reversible nature, it does not ensure less recidivism. Likewise, the research quality of ADT drugs is limited and not enough to support their use. Child sex offenders, and not paraphilic subjects who have not committed assaults, show signs of elevated prenatal exposure to androgens and a higher methylation state of the androgen receptor gene. Sexual behaviour is regulated by subcortical (hypothalamus, brainstem and spinal cord) and cortical structures of the brain, in addition to brain circuits (dopaminergic, serotonergic). Those with paraphilic disorders show abnormalities at these levels that could relate to the risk of sexual offences. In conclusion, androgens represent a significant part of the pathophysiology of paraphilias and therefore, ADT seems promising. Nonetheless, more studies are needed to make definite conclusions about the efficacy of long-term ADT in paraphilic patients.
Collapse
Affiliation(s)
| | - Melisa Onton-Díaz
- Faculty of Medicine, Cayetano Heredia Peruvian University., Lima, Peru
| | - Gustavo F Gonzales
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|