1
|
Chen J, Chen K, Zhang S, Huang X. SIRT1 silencing ameliorates malignancy of non-small cell lung cancer via activating FOXO1. Sci Rep 2024; 14:19948. [PMID: 39198693 PMCID: PMC11358480 DOI: 10.1038/s41598-024-70970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
Non-small cell lung cancer (NSCLC), being the most prevalent and lethal malignancy affecting the lungs, poses a significant threat to human health. This research aims at illustrating the precise role and related mechanisms of silent information regulator type-1 (SIRT1) in NSCLC progression. The expression pattern of SIRT1 in NSCLC cell lines was examined using quantitative real-time polymerase chain reaction and western blotting. Functional assays in NSCLC cell lines validated the biological capabilities of SIRT1 on malignant phenotypes, and its impact on tumorigenicity was further evaluated in vivo. In addition, the FOXO1 inhibitor AS1842856 was applied to verify the role of SIRT1 on FOXO pathway in vitro. SIRT1 expression was prominently elevated in NSCLC cell lines. The depletion of SIRT1 retarded the capabilities of proliferation, migration and invasion, while enhancing apoptosis in NSCLC cells. Furthermore, SIRT1 silencing restricted the tumorigenesis of NSCLC in vivo. Additionally, AS1842856 treatment ameliorated the inhibitory effect of SIRT1 deficiency on malignant phenotypes in NSCLC cells. SIRT1 deletion exerted an anti-oncogenic role in NSCLC via activation of FOXO1.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, 570311, Hainan Province, China
| | - Kebin Chen
- Department of Radiation Oncology, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| | - Shuai Zhang
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, 570311, Hainan Province, China.
| | - Xiaopeng Huang
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, 570311, Hainan Province, China.
| |
Collapse
|
2
|
Hou J, Wang X, Zhang J, Shen Z, Li X, Yang Y. Chuanxiong Renshen Decoction Inhibits Alzheimer's Disease Neuroinflammation by Regulating PPARγ/NF-κB Pathway. Drug Des Devel Ther 2024; 18:3209-3232. [PMID: 39071817 PMCID: PMC11283787 DOI: 10.2147/dddt.s462266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Background and Aim Previous studies of our research group have shown that Chuanxiong Renshen Decoction (CRD) has the effect of treating AD, but the exact mechanism of its effect is still not clarified. The aim of this study was to investigate the effect and mechanism of CRD on AD neuroinflammation. Materials and Methods Morris Water Maze (MWM) tests were employed to assess the memory and learning capacity of AD mice. HE and Nissl staining were used to observe the neural cells of mice. The expression of Iba-1 and CD86 were detected by immunohistochemical staining. Utilize UHPLC-MS/MS metabolomics techniques and the KEGG to analyze the metabolic pathways of CRD against AD. Lipopolysaccharide (LPS) induced BV2 microglia cells to construct a neuroinflammatory model. The expression of Iba-1 and CD86 were detected by immunofluorescence and flow cytometry. The contents of TNF-α and IL-1β were detected by ELISA. Western blot assay was used to detect the expression of PPARγ, p-NF-κB p65, NF-κB p65 proteins and inflammatory cytokines iNOS and COX-2 in PPARγ/NF-κB pathway with and without PPARγ inhibitor GW9662. Results CRD ameliorated the learning and memory ability of 3×Tg-AD mice, repaired the damaged nerve cells in the hippocampus, reduced the area of Iba-1 and CD86 positive areas in both the hippocampus and cortex regions, as well as attenuated serum levels of IL-1β and TNF-α in mice. CRD-containing serum significantly decreased the expression level of Iba-1, significantly reduced the levels of TNF-α and IL-1β, significantly increased the protein expression of PPARγ, and significantly decreased the proteins expression of iNOS, COX-2 and p-NF-κB p65 in BV2 microglia cells. After addition of PPARγ inhibitor GW9662, the inhibitory effect of CRD-containing serum on NF-κB activation was significantly weakened. Conclusion CRD can activate PPARγ, regulating PPARγ/NF-κB signaling pathway, inhibiting microglia over-activation and reducing AD neuroinflammation.
Collapse
Affiliation(s)
- Jinling Hou
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Xiaoyan Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Jian Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Zhuojun Shen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Xiang Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, People’s Republic of China
| | - Yuanxiao Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, People’s Republic of China
| |
Collapse
|
3
|
Zheng Z, Yang T, Li Y, Qu P, Shao Z, Wang Y, Chang W, Umar SM, Wang J, Ding N, Wang W. A future directions of renal cell carcinoma treatment: combination of immune checkpoint inhibition and carbon ion radiotherapy. Front Immunol 2024; 15:1428584. [PMID: 39091498 PMCID: PMC11291258 DOI: 10.3389/fimmu.2024.1428584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Renal cell carcinoma (RCC) is considered radio- and chemo-resistant. Immune checkpoint inhibitors (ICIs) have demonstrated significant clinical efficacy in advanced RCC. However, the overall response rate of RCC to monotherapy remains limited. Given its immunomodulatory effects, a combination of radiotherapy (RT) with immunotherapy is increasingly used for cancer treatment. Heavy ion radiotherapy, specifically the carbon ion radiotherapy (CIRT), represents an innovative approach to cancer treatment, offering superior physical and biological effectiveness compared to conventional photon radiotherapy and exhibiting obvious advantages in cancer treatment. The combination of CIRT and immunotherapy showed robust effectiveness in preclinical studies of various tumors, thus holds promise for overcoming radiation resistance of RCC and enhancing therapeutic outcomes. Here, we provide a comprehensive review on the biophysical effects of CIRT, the efficacy of combination treatment and the underlying mechanisms involved in, as well as its therapeutic potential specifically within RCC.
Collapse
Affiliation(s)
- Zhouhang Zheng
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Tianci Yang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yixuan Li
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Pei Qu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiang Shao
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Shahzad Muhammad Umar
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Fan B, Wang Q, Wang S, Gao Y, Liang Y, Pan J, Fu X, Li L, Meng W. Label-Free Ratiometric Homogeneous Electrochemical Strategy Based on Exonuclease III-Aided Signal Amplification for Facile and Rapid Detection of miR-378. Int J Anal Chem 2024; 2024:8368987. [PMID: 38807657 PMCID: PMC11132827 DOI: 10.1155/2024/8368987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/24/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
MiR-378 is abnormally expressed in various cancers, such as hepatocellular carcinoma, renal cell carcinoma, and nonsmall cell lung cancer. Here, we developed a label- and immobilization-free ratiometric homogeneous electrochemical strategy based on exonuclease III (Exo III) for the facile and rapid determination of miR-378. Two 3'-protruding hairpin DNA probes (HPs) are designed in this strategy. Doxorubicin (DOX) and potassium ferrocyanide (Fe2+) were used as label-free probes to produce a response signal (IDOX) and a reference signal (IFe2+) in the solution phase. When no target was present in the solution, the HP was stable, most of the DOX was intercalated in the stem of the HP, and the diffusion rate of DOX was significantly reduced, resulting in reduced electrochemical signal response. When miR-378 was present, double-cycle signal amplification triggered by Exo III cleavage was initiated, ultimately disrupting the hairpin structures of HP1 and HP2 and releasing a large amount of DOX into the solution, yielding a stronger electrochemical signal, which was low to 50 pM. This detection possesses excellent selectivity, demonstrating high application potential in biological systems, and offers simple and low-cost electrochemical detection for miR-378.
Collapse
Affiliation(s)
- Bingyuan Fan
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
- Nanpi No. 1 Middle School, Cangzhou 061599, China
| | - Shan Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Yahui Gao
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Liang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Jinru Pan
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Xinrui Fu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Li Li
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wei Meng
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Zhao Z, Li H, Li J, Rong Y, Zhao L, Hao M, Tian F. Expression of lncRNA LINC00943 in lung squamous cell carcinoma and its relationship with tumor progression. J Cardiothorac Surg 2024; 19:222. [PMID: 38627774 PMCID: PMC11020474 DOI: 10.1186/s13019-024-02771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/30/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Molecular biology has been applied to the diagnosis, prognosis and treatment of various diseases, and long noncoding RNA LINC00943 (lncRNA LINC00943; LINC00943) plays an important role in a variety of cancers. Therefore, this study explored the prognostic role of LINC00943 in lung squamous cell carcinoma (LUSC) and understood its impact on the development of LUSC. METHODS There are 89 LUSC patients were involved in current assay. By detecting the expression of LINC00943 and miR-196b-5p in tissues and cells, LINC00943 and its correlation with the characteristics of clinical data were analyzed. The biological function of LINC00943 was studied by Transwell migration and invasion assays. In addition, Pearson correlation coefficient and luciferase activity experiments were chosen to characterize the relationship between LINC00943 and miR-196b-5p and explore the mechanism of LINC00943. RESULTS Compared with normal controls, LINC00943 expression in LUSC tissues and cells was significantly reduced, miR-196b-5p was markedly increased, there was a negative correlation between LINC00943 and miR-196b-5p. According to the in vitro cell experiments, migration and invasion of LUSC cells were suppressed by overexpression of LINC00943. Besides, LINC00943 was demonstrated to have prognostic power and targeting miR-196b-5p was involved in the progression of LUSC. CONCLUSIONS Overexpression of LINC00943 was molecular sponge for miR-196b-5p that controlled the deterioration of LUSC, which had great potential as a prognostic biomarker for LUSC.
Collapse
Affiliation(s)
- Zhenshan Zhao
- Department of Thoracic Surgery, KaiLuan General Hospital, Tangshan, 063000, Hebei, China
| | - Haiyang Li
- Department of Oncology, KaiLuan General Hospital, No. 57, Xinhua East Road, Tangshan, 063000, Hebei, China.
| | - Jing Li
- Department of Thoracic Surgery, KaiLuan General Hospital, Tangshan, 063000, Hebei, China
| | - Yao Rong
- Department of Thoracic Surgery, KaiLuan General Hospital, Tangshan, 063000, Hebei, China
| | - Lidong Zhao
- Department of Clinical Laboratory, TangShan GongRen Hospital, Tangshan, 063003, Hebei, China
| | - Menghui Hao
- Department of Thoracic Surgery, KaiLuan General Hospital, Tangshan, 063000, Hebei, China
| | - Faming Tian
- Department of College of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| |
Collapse
|
6
|
Alsalmi O, Mashraqi MM, Alshamrani S, Almasoudi HH, Alharthi AA, Gharib AF. Variolin B from sea sponge against lung cancer: a multitargeted molecular docking with fingerprinting and molecular dynamics simulation study. J Biomol Struct Dyn 2024; 42:3507-3519. [PMID: 37855303 DOI: 10.1080/07391102.2023.2272204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/07/2023] [Indexed: 10/20/2023]
Abstract
Lung Cancer is the one that causes more fatalities in the world compared to other cancers, and its uniqueness is that it can be found in both males and females. However, recent data has shown that males are more affected due to lifestyle habits like smoking, tobacco consumption and inhaling polluted air. The World Health Organization has kept lung cancer on its priority list as it causes 1.8 million deaths worldwide each year, and the predictions show that the cases are going to increase year by year, and by 2050, there can be 3.8 million new cases and 3.2 million deaths, and the global health system is not prepared for it. Also, finding drug candidates that can help shrink cancerous cells and lead to their death is essential to reduce global mortality. The system needs drug compounds that can inhibit multiple paths together not to enter drug resistance quickly and to reduce costs. Our study identified a compound named Variolin B (DB08694) that belongs to the organic compounds class of pyrrolopyridines. The identified compound can inhibit multiple proteins, drastically reducing the global burden. Variolin B was identified as a potential candidate against lung cancer using the multisampling algorithm such as HTVS, SP, and XP, followed by MM\GBSA calculations showing the docking score of -9.245 Kcal/mol to -5.92 Kcal/mol. Also, we have validated it with ADMET predictions and molecular fingerprinting to analyse the interaction patterns. Further, the study was extended to molecular dynamics simulations for 100 ns to understand the complex stability and simulative interactions. The complex's overall molecular dynamics simulation helped us understand that the identified candidate is stable with the lowest deviation and fluctuations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ohud Alsalmi
- Department of Clinical laboratory sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Afaf Awwadh Alharthi
- Department of Clinical laboratory sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical laboratory sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
7
|
Ning J, Chen L, Zeng Y, Xiao G, Tian W, Wu Q, Tang J, He S, Tanzhu G, Zhou R. The scheme, and regulative mechanism of pyroptosis, ferroptosis, and necroptosis in radiation injury. Int J Biol Sci 2024; 20:1871-1883. [PMID: 38481804 PMCID: PMC10929204 DOI: 10.7150/ijbs.91112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/29/2024] [Indexed: 08/26/2024] Open
Abstract
Radiotherapy (RT) stands as the primary treatment for tumors, but it inevitably causes damage to normal cells. Consequently, radiation injury is a crucial consideration for radiation oncologists during therapy planning. Cell death including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis play significant roles in tumor treatment. While previous studies elucidated the induction of apoptosis and autophagy by ionizing radiation (IR), recent attention has shifted to pyroptosis, ferroptosis, and necroptosis, revealing their effects induced by IR. This review aims to summarize the strategies employed by IR, either alone or in combination therapy, to induce pyroptosis, ferroptosis, and necroptosis in radiation injury. Furthermore, we explore their effects and molecular pathways, shedding light on their roles in radiation injury. Finally, we summarize the regulative agents for these three types of cell death and their mechanisms. In summary, optimizing radiation dose, dose rate, and combined treatment plans to minimize radiation damage and enhance the killing effect of RT is a key focus.
Collapse
Affiliation(s)
- Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yu Zeng
- Changsha Stomatological Hospital, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Wu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiyuan Tang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Shuangshuang He
- Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| |
Collapse
|
8
|
Chailapakul P, Kato TA. From Basic Radiobiology to Translational Radiotherapy. Int J Mol Sci 2022; 23:ijms232415902. [PMID: 36555542 PMCID: PMC9781393 DOI: 10.3390/ijms232415902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
The Special Issue, entitled "From basic radiobiology to translational radiotherapy", highlights recent advances in basic radiobiology and the potential to improve radiotherapy in translational research [...].
Collapse
|
9
|
Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol 2022; 19:791-803. [DOI: 10.1038/s41571-022-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
|