1
|
Zhao H, Fu X, Gu W, Ding X, Zhua L. 53BP1, a known chromatin-associated factor that promotes DNA damage repair, is differentially modulated during bovine herpesvirus 1 infection in vitro and in vivo. Vet Microbiol 2025; 300:110334. [PMID: 39653013 DOI: 10.1016/j.vetmic.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Bovine herpesvirus 1 (BoHV-1) productive infection induces the formation of DNA double-strand breaks (DSBs), the most severe form of DNA lesions in cultured cells. 53BP1, a chromatin-associated factor, plays an essential role in DNA damage repair. In this study, we demonstrated that BoHV-1 productive infection in bovine kidney (MDBK) cells increased the expression of phosphorylated form of H2AX protein (γH2AX) and promoted the formation of γH2AX foci in the nucleus, indicative of enhanced DNA lesions. However, despite the elevated total 53BP1 protein levels, its recruitment to the nucleus and formation of 53BP1 foci was impaired, suggesting the disruption of 53BP1-mediated DNA damage repair (DDR). Furthermore, immunohistochemistry (IHC) studies showed that γH2AX was readily detected in trigeminal ganglia (TG) neurons of New Zealand White rabbits during both acute infection (day 3) and dexamethasone (DEX)-stimulated reactivation from latency, indicating the occurrence of DNA damage in vivo. This was consistent with the substantial reduction of 53BP1 protein expression in these tissues. Interestingly, 53BP1 was detected in a subset of TG neurons from both mock-infected and latently infected rabbits, but the localization profile of 53BP1 looks largely different, suggesting that 53BP1 may play a role in viral latency. Taken together, our findings demonstrated that BoHV-1 lytic infection impaired 53BP1-dependent DNA damage repair through differing mechanisms in vitro and in vivo, potentially promoting the accumulation of DNA damage. Moreover, virus latency altered the 53BP1 localization, underscoring the importance of 53BP1 signaling in the virus pathogenicity.
Collapse
Affiliation(s)
- Heci Zhao
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, School of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiaotian Fu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wenyuan Gu
- Center for Animal Diseases Control and Prevention of Hebei Province, Shijiazhuang 050035, China
| | - Xiuyan Ding
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Liqian Zhua
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, School of Life Sciences, Hebei University, Baoding 071002, China; Center for Animal Diseases Control and Prevention of Hebei Province, Shijiazhuang 050035, China.
| |
Collapse
|
2
|
Chatterjee S, Ghosh S, Datey A, Mahish C, Chattopadhyay S, Chattopadhyay S. Chikungunya virus perturbs the Wnt/β-catenin signaling pathway for efficient viral infection. J Virol 2023; 97:e0143023. [PMID: 37861335 PMCID: PMC10688348 DOI: 10.1128/jvi.01430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Being obligate parasites, viruses use various host cell machineries in effectively replicating their genome, along with virus-encoded enzymes. In order to carry out infection and pathogenesis, viruses are known to manipulate fundamental cellular processes in cells and interfere with host gene expression. Several viruses interact with the cellular proteins involved in the Wnt/β-catenin pathway; however, reports regarding the involvement of protein components of the Wnt/β-catenin pathway in Chikungunya virus (CHIKV) infection are scarce. Additionally, there are currently no remedies or vaccines available for CHIKV. This is the first study to report that modulation of the Wnt/β-catenin pathway is crucial for effective CHIKV infection. These investigations deepen the understanding of the underlying mechanisms of CHIKV infection and offer new avenue for developing effective countermeasures to efficiently manage CHIKV infection.
Collapse
Affiliation(s)
- Sanchari Chatterjee
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Soumyajit Ghosh
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ankita Datey
- Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, India
| | - Chandan Mahish
- National Institute of Science Education and Research, an OCC of Homi Bhaba National Institute, Bhubaneswar, Odisha, India
| | - Subhasis Chattopadhyay
- National Institute of Science Education and Research, an OCC of Homi Bhaba National Institute, Bhubaneswar, Odisha, India
| | | |
Collapse
|
3
|
Davola ME, Cormier O, Vito A, El-Sayes N, Collins S, Salem O, Revill S, Ask K, Wan Y, Mossman K. Oncolytic BHV-1 Is Sufficient to Induce Immunogenic Cell Death and Synergizes with Low-Dose Chemotherapy to Dampen Immunosuppressive T Regulatory Cells. Cancers (Basel) 2023; 15:cancers15041295. [PMID: 36831636 PMCID: PMC9953776 DOI: 10.3390/cancers15041295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Immunogenic cell death (ICD) can switch immunologically "cold" tumors "hot", making them sensitive to immune checkpoint inhibitor (ICI) therapy. Many therapeutic platforms combine multiple modalities such as oncolytic viruses (OVs) and low-dose chemotherapy to induce ICD and improve prognostic outcomes. We previously detailed many unique properties of oncolytic bovine herpesvirus type 1 (oBHV) that suggest widespread clinical utility. Here, we show for the first time, the ability of oBHV monotherapy to induce bona fide ICD and tumor-specific activation of circulating CD8+ T cells in a syngeneic murine model of melanoma. The addition of low-dose mitomycin C (MMC) was necessary to fully synergize with ICI through early recruitment of CD8+ T cells and reduced infiltration of highly suppressive PD-1+ Tregs. Cytokine and gene expression analyses within treated tumors suggest that the addition of MMC to oBHV therapy shifts the immune response from predominantly anti-viral, as evidenced by a high level of interferon-stimulated genes, to one that stimulates myeloid cells, antigen presentation and adaptive processes. Collectively, these data provide mechanistic insights into how oBHV-mediated therapy modalities overcome immune suppressive tumor microenvironments to enable the efficacy of ICI therapy.
Collapse
Affiliation(s)
- Maria Eugenia Davola
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Olga Cormier
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alyssa Vito
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Nader El-Sayes
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Susan Collins
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Omar Salem
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Spencer Revill
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Kjetil Ask
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Yonghong Wan
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Karen Mossman
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 23542)
| |
Collapse
|
4
|
DNA Damage Response Differentially Affects BoHV-1 Gene Transcription in Cell Type-Dependent Manners. Biomedicines 2022; 10:biomedicines10092282. [PMID: 36140380 PMCID: PMC9496131 DOI: 10.3390/biomedicines10092282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important pathogen of cattle, is also a promising oncolytic virus. Recent studies have demonstrated that the virus infection induces DNA damage and DNA damage response (DDR), potentially accounting for virus infection-induced cell death and oncolytic effects. However, whether the global DDR network affects BoHV-1 productive infection remains to be elucidated. In this study, we show that global DDR induced by ultraviolet (UV) irradiation prior to BoHV-1 infection differentially affected transcription of immediate early (IE) genes, such as infected cell protein 0 (bICP0) and bICP22, in a cell-type-dependent manner. In addition, UV-induced DDR may affect the stabilization of viral protein levels, such as glycoprotein C (gC) and gD, because the variation in mRNA levels of gC and gD as a consequence of UV treatment were not in line with the variation in individual protein levels. The virus productive infection also affects UV-primed DDR signaling, as demonstrated by the alteration of phosphorylated histone H2AX (γH2AX) protein levels and γH2AX formation following virus infection. Taken together, for the first time, we evidenced the interplay between UV-primed global DDR and BoHV-1 productive infection. UV-primed global DDR differentially modulates the transcription of virus genes and stabilization of virus protein. Vice versa, the virus infection may affect UV-primed DDR signaling.
Collapse
|