1
|
Yang T, Fang H, Lin D, Yang S, Luo H, Wang L, Yang B. Ganoderma Lucidum polysaccharide peptide (GL-PP2): A potential therapeutic agent against sepsis-induced organ injury by modulating Nrf2/NF-κB pathways. Int J Biol Macromol 2024; 285:138378. [PMID: 39643194 DOI: 10.1016/j.ijbiomac.2024.138378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Sepsis, characterized by a severe immune response to infection, remains a leading cause of mortality, with few effective strategies to prevent organ damage. Targeting inflammation, oxidative stress, and apoptosis is crucial for improving outcomes and advancing sepsis management. We investigated the protective effects of Ganoderma Lucidum Polysaccharide Peptide 2 (GL-PP2) against sepsis-induced organ damage, focusing on immune regulation and kidney protection. In a murine sepsis model, mice received intraperitoneal injection of GL-PP2 (25, 50, 100 mg/kg) for seven days, with dexamethasone (5 mg/kg) as a positive control. Sepsis was induced by intraperitoneal lipopolysaccharide (LPS, 10 mg/kg), followed by histological, biochemical, molecular, and network pharmacology analyses to evaluate kidney and spleen damage. Results demonstrated that GL-PP2 mitigates LPS-induced kidney and spleen damage, preserving tissue integrity and improving renal function markers (blood creatinine, urea nitrogen). GL-PP2 also lowers pro-inflammatory cytokines, boosts antioxidant enzymes, and modulates the Nrf2/NF-κB pathways, highlighting its anti-inflammatory and antioxidant effects. Additionally, it reduces apoptosis by regulating Bax, cleaved caspase-3, and Bcl-2 expression. These findings indicate that GL-PP2 is a promising sepsis therapy candidate, as it targets inflammation, oxidative stress, and apoptosis, reducing organ injury. By modulating key pathways, GL-PP2 could improve clinical outcomes, warranting further study.
Collapse
Affiliation(s)
- Teng Yang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Hui Fang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, China.
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Shangpeng Yang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Hongjian Luo
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Lianfu Wang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Baoxue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Kar E, Kar F, Can B, Çakır Gündoğdu A, Özbayer C, Koçak FE, Şentürk H. Prophylactic and Therapeutic Efficacy of Boric Acid on Lipopolysaccharide-Induced Liver and Kidney Inflammation in Rats. Biol Trace Elem Res 2024; 202:3701-3713. [PMID: 37910263 DOI: 10.1007/s12011-023-03941-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
In our study, we aimed to examine possible prophylactic (P) or therapeutic (T) effects of boric acid (BA) on lipopolysaccharide (LPS) induced liver and kidney damages. Thirty-two rats were divided into four groups as control, LPS, BAP+LPS, and LPS+BAT. BA was given orally to the rats one hour before the intraperitoneal LPS administration in the BAP+LPS group and one hour after the LPS administration in the LPS+BAT group. Malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-6 (IL-6), IL-10, reduced glutathione (GSH), total oxidant and antioxidant status (TOS and TAS), semaphorin-3A (SEMA3A), cytochrome c (CYCS), and caspase-3 (CASP3) parameters were determined by ELISA method to monitor inflammation, oxidative stress, and apoptosis in the liver and kidney tissues of rats. In addition, alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, creatinine (CREA), C-reactive protein (CRP), gamma glutamyl transferase (GGT), glucose (GLU), sodium (Na), potassium (K), and chlorine (Cl) biochemical parameters were measured in rat serums to monitor liver and kidney functions. Liver and kidney tissues were also examined histopathologically and immunohistochemically. All data were statistically analyzed. Our histological, biochemical, inflammatory, oxidative stress, and apoptotic findings showed that LPS causes serious damage to liver and kidney tissues. Boric acid application brought about significant improvements on the parameters. However, this improvement was seen in the BAP+LPS group, and the results of the LPS+BAT group were insufficient to improve. Our results showed that boric acid administration is effective on severe liver and kidney damage caused by LPS. It has been concluded that prophylactic application is more effective, while therapeutic application is insufficient.
Collapse
Affiliation(s)
- Ezgi Kar
- Training and Research Center, Kutahya Health Sciences University, Kutahya, Turkey.
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Betül Can
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ayşe Çakır Gündoğdu
- Department of Histology and Embryology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Cansu Özbayer
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Fatma Emel Koçak
- Department of Medical Biochemistry, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Hakan Şentürk
- Department of Biology, Faculty of Art and Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
3
|
Srdić T, Đurašević S, Lakić I, Ružičić A, Vujović P, Jevđović T, Dakić T, Đorđević J, Tosti T, Glumac S, Todorović Z, Jasnić N. From Molecular Mechanisms to Clinical Therapy: Understanding Sepsis-Induced Multiple Organ Dysfunction. Int J Mol Sci 2024; 25:7770. [PMID: 39063011 PMCID: PMC11277140 DOI: 10.3390/ijms25147770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis-induced multiple organ dysfunction arises from the highly complex pathophysiology encompassing the interplay of inflammation, oxidative stress, endothelial dysfunction, mitochondrial damage, cellular energy failure, and dysbiosis. Over the past decades, numerous studies have been dedicated to elucidating the underlying molecular mechanisms of sepsis in order to develop effective treatments. Current research underscores liver and cardiac dysfunction, along with acute lung and kidney injuries, as predominant causes of mortality in sepsis patients. This understanding of sepsis-induced organ failure unveils potential therapeutic targets for sepsis treatment. Various novel therapeutics, including melatonin, metformin, palmitoylethanolamide (PEA), certain herbal extracts, and gut microbiota modulators, have demonstrated efficacy in different sepsis models. In recent years, the research focus has shifted from anti-inflammatory and antioxidative agents to exploring the modulation of energy metabolism and gut microbiota in sepsis. These approaches have shown a significant impact in preventing multiple organ damage and mortality in various animal sepsis models but require further clinical investigation. The accumulation of this knowledge enriches our understanding of sepsis and is anticipated to facilitate the development of effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Tijana Srdić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Iva Lakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Aleksandra Ružičić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Predrag Vujović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tanja Jevđović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tamara Dakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sofija Glumac
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| |
Collapse
|
4
|
Pușcaș A, Buț MG, Vari CE, Ősz BE, Ștefănescu R, Filip C, Jîtcă G, Istrate TI, Tero-Vescan A. Meldonium Supplementation in Professional Athletes: Career Destroyer or Lifesaver? Cureus 2024; 16:e63634. [PMID: 39092347 PMCID: PMC11292090 DOI: 10.7759/cureus.63634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Meldonium is a substance with known anti-anginal effects demonstrated by numerous studies and human clinical trials; however, it does not possess marketing authorization within the European Union, only in ex-Soviet republics. Since 2016, meldonium has been included by the World Anti-doping Agency (WADA) on the S4 list of metabolic modulators. In performance athletes, meldonium is now considered a doping agent due to its capacity to decrease lactate production during and after exercise, its capability to enhance the storage and utilization of glycogen, and its protective action against oxidative stress. Together, these attributes can significantly improve aerobic endurance, cardiac function, and capacity as well as shorten recovery times (allowing higher intensity training), thereby enhancing performance. The purpose of this review is to highlight the most important mechanisms underlying the protective effect of meldonium against mitochondrial dysfunction (MD), which is responsible for oxidative stress, inflammation, and the cardiac changes known as "athletic heart syndrome." Meldonium acts as an inhibitor of γ-butyrobetaine hydroxylase (BBOX), preventing the de novo synthesis of carnitine and its absorption at the intestinal level via the organic cation/carnitine transporter 2 (OCTN2) and directing the oxidation of fatty acids to the peroxisomes. The decrease in mitochondrial β-oxidation of fatty acids leads to a reduction in lipid peroxidation products that cause oxidative stress and prevent the formation of acyl/acetyl-carnitines involved in numerous pathological disorders. Given the recent findings of the potentially detrimental effects of prolonged high-intensity exercise on cardiovascular health and coronary atherosclerosis, there may be legitimate arguments for the justification of the use of substances like meldonium as protective supplements for athletes.
Collapse
Affiliation(s)
- Amalia Pușcaș
- Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - Mădălina-Georgiana Buț
- Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - Camil-Eugen Vari
- Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - Bianca-Eugenia Ősz
- Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - Ruxandra Ștefănescu
- Pharmacognosy and Phytotherapy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - Cristina Filip
- Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - George Jîtcă
- Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - Tudor-Ionuț Istrate
- Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| | - Amelia Tero-Vescan
- Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, ROU
| |
Collapse
|
5
|
Han X, Liu X, Zhao X, Wang X, Sun Y, Qu C, Liang J, Yang B. Dapagliflozin ameliorates sepsis-induced heart injury by inhibiting cardiomyocyte apoptosis and electrical remodeling through the PI3K/Akt pathway. Eur J Pharmacol 2023; 955:175930. [PMID: 37479014 DOI: 10.1016/j.ejphar.2023.175930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Sepsis-induced heart injury is one of the leading causes of circulation disorders worldwide. Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor mainly used for controlling blood glucose, has been shown to exert a protective effect on cardiomyocytes. However, the protective effect of dapagliflozin against sepsis-induced cardiac injury and the underlying mechanism needs to be studied. AIM This study aims to investigate the effect of dapagliflozin on sepsis-induced cardiomyopathy and the potential mechanisms involved. METHODS The rat model of sepsis was constructed by intraperitoneal injection of lipopolysaccharide. Echocardiography and electrophysiological studies were performed to detect changes in cardiac function and electrical activity. Cardiac pathological alternation and cardiomyocyte apoptosis were measured by H&E staining, serological analysis, immunohistochemical, immunofluorescence, and TUNEL assays. Western blot and qRT-PCR were performed to elucidate the underlying mechanism of dapagliflozin. Additionally, corresponding experiments in H9c2 cells were performed to further validate the mechanisms in vitro. RESULTS Dapagliflozin improved cardiac dysfunction and reduced the susceptibility to ventricular arrhythmias in sepsis rats by ameliorating cardiac inflammation, suppressing cardiomyocyte apoptosis, and alleviating ventricular electrical remodeling. The PI3K/Akt signaling pathway inhibitor inhibited the anti-apoptotic effect of dapagliflozin, indicating that the protective effect was related to the activation of the PI3K/Akt pathway. CONCLUSION Dapagliflozin ameliorated sepsis-induced cardiac injury by suppressing electrical remodeling and cardiomyocyte apoptosis, which could be attributed to the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xueyu Han
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Xin Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Xiukun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Yazhou Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Jinjun Liang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| |
Collapse
|
6
|
Yu J, Hu G, Guo X, Cao H, Zhang C. Quercetin Alleviates Inflammation and Energy Deficiency Induced by Lipopolysaccharide in Chicken Embryos. Animals (Basel) 2023; 13:2051. [PMID: 37443849 DOI: 10.3390/ani13132051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Energy deficiency causes multiple organ dysfunctions after LPS induction. Quercetin is a phenolic compound found in herbal medicines. However, the effects of quercetin in alleviating LPS-induced energy deficiency remain unclear. In the present study, an in vivo LPS-induced inflammation model was established in chicken embryos. Specific pathogen-free chicken embryos (n = 120) were allocated to control, PBS with or without ethanol, quercetin (10, 20, or 40 nmol, respectively), and LPS (125 ng/egg) with or without quercetin groups. Fifteen day old embryonated eggs were injected with the abovementioned solutions via the allantoic cavity. On embryonic day 19, the tissues of the embryos were collected for histopathological examination using frozen oil red O staining, RNA extraction, real-time quantitative polymerase chain reaction, and immunohistochemical investigations. The glycogen and lipid contents in the liver increased after LPS stimulation as compared with the PBS group, whereas quercetin decreased the accumulation as compared with the LPS group. The mRNA expressions of AMPKα1 and AMPKα2 in the duodena, ceca, and livers were upregulated after LPS induction as compared with the PBS group, while quercetin could downregulate these expressions as compared with the LPS group. The immunopositivity of AMPKα2 in the villus, crypt, lamina propria, tunica muscularis, and myenteric plexus in the duodena and in the cytoplasms of hepatocytes significantly increased after LPS induction when compared with the PBS group (p < 0.01), whereas the immunopositivity to AMPKα2 in the quercetin treatment group significantly decreased when compared with the LPS group (p < 0.01 or p < 0.05). The LPS-induced high expressions of transcription factor PPARα and glucose transporter (SGLT1) were blocked by quercetin in the duodena, ceca, and livers. Quercetin treatment improved the LPS-induced decrease in APOA4 in the duodena, ceca, and livers. The mRNA expression of PEPT1 in the duodena and ceca increased after LPS challenge, whereas quercetin could downregulate PEPT1 gene expression. These data demonstrate that quercetin improved the energy deficiency induced by LPS in chicken embryos. The LPS-induced inflammation model was established to avoid the effect of LPS exposure from the environment and intestinal flora. The results form the basis the administration of quercetin pretreatment (in ovo infection) to improve the energy state of chicken embryos and improve the inflammation response.
Collapse
Affiliation(s)
- Jinhai Yu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
7
|
Géhin C, Fowler SJ, Trivedi DK. Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:104-131. [PMID: 38715925 PMCID: PMC10989624 DOI: 10.1002/ansa.202300009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 11/17/2024]
Abstract
Lipids are biological molecules that play vital roles in all living organisms. They perform many cellular functions, such as 1) forming cellular and subcellular membranes, 2) storing and using energy, and 3) serving as chemical messengers during intra- and inter-cellular signal transduction. The large-scale study of the pathways and networks of cellular lipids in biological systems is called "lipidomics" and is one of the fastest-growing omics technologies of the last two decades. With state-of-the-art mass spectrometry instrumentation and sophisticated data handling, clinical studies show how human lipid composition changes in health and disease, thereby making it a valuable medium to collect for clinical applications, such as disease diagnostics, therapeutic decision-making, and drug development. This review gives a comprehensive overview of current workflows used in clinical research, from sample collection and preparation to data and clinical interpretations. This is followed by an appraisal of applications in 2022 and a perspective on the exciting future of clinical lipidomics.
Collapse
Affiliation(s)
- Caroline Géhin
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| | - Stephen J. Fowler
- Department of Respiratory MedicineManchester University Hospitals NHS Foundation TrustManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Biomedical Research CentreManchester University Hospitals NHS Foundation TrustManchesterUK
| | - Drupad K. Trivedi
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| |
Collapse
|
8
|
Stolić Jovanović A, Martinović M, Žugić A, Nešić I, Tosti T, Blagojević S, Tadić VM. Derivatives of L-Ascorbic Acid in Emulgel: Development and Comprehensive Evaluation of the Topical Delivery System. Pharmaceutics 2023; 15:pharmaceutics15030813. [PMID: 36986679 PMCID: PMC10056080 DOI: 10.3390/pharmaceutics15030813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The dual controlled release of emulgels makes them efficient drug delivery systems of increasing interest. The framework of this study was to incorporate selected L-ascorbic acid derivatives into emulgels. From the formulated emulgels, the release profiles of actives were evaluated considering their different polarities and concentrations, and consequently their effectiveness on the skin via a long-term in vivo study that lasted for 30 days was determined. Skin effects were assessed by measuring the electrical capacitance of the stratum corneum (EC), trans-epidermal water loss (TEWL), melanin index (MI) and skin pH. In addition, the sensory and textural properties of emulgel formulations were compared with each other. The changes in the rate of the release of the L-ascorbic acid derivatives were monitored using the Franz diffusion cells. The obtained data were statistically significant, and indicated an increase in the degree of hydration of the skin and skin whitening potential, while no significant changes in TEWL and pH values were detected. The consistency, firmness and stickiness of the emulgels were estimated by volunteers applying the established sensory evaluation protocol. In addition, it was revealed that the difference in hydrophilic/lipophilic properties of L-ascorbic acid derivatives influenced their release profiles without changing their textural characteristics. Therefore, this study highlighted emulgels as L-ascorbic acid suitable carrier systems and one of the promising candidates as novel drug delivery systems.
Collapse
Affiliation(s)
| | - Milica Martinović
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia
| | - Ana Žugić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia
| | - Ivana Nešić
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Stevan Blagojević
- The Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Beograd, Serbia
| | - Vanja M. Tadić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
9
|
He YF, Hu XM, Khan MA, Yu BY, Sheng YC, Xiao XZ, Wan XX, Tan SP, Xiong K. HSF1 Alleviates Brain Injury by Inhibiting NLRP3-Induced Pyroptosis in a Sepsis Model. Mediators Inflamm 2023; 2023:2252255. [PMID: 36741074 PMCID: PMC9897924 DOI: 10.1155/2023/2252255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 09/16/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Sepsis, which could cause a systemic inflammatory response, is a life-threatening disease with a high morbidity and mortality rate. There is evidence that brain injury may be related to severe systemic infection induced by sepsis. The brain injury caused by sepsis could increase the risk of mortality in septic patients, which seriously affects the septic patient's prognosis of survival. Although there remains a focus on sepsis research, clinical measures to prevent and treat brain injury in sepsis are not yet available, and the high mortality rate is still a big health burden. Therefore, it is necessary to investigate the new molecules or regulated pathways that can effectively inhibit the progress of sepsis. OBJECTIVE NLR family pyrin domain-containing 3 (NLRP3) increased in the procession of sepsis and functioned as the key regulator of pyroptosis. Heat shock factor 1 (HSF1) can protect organs from multiorgan dysfunction syndrome induced by lipopolysaccharides in mice, and NLRP3 could be inhibited by HSF1 in many organs. However, whether HSF1 regulated NLRP3 in sepsis-induced brain injury, as well as the detailed mechanism of HSF1 in brain injury, remains unknown in the sepsis model. In this research, we try to explore the relationship between HSF1 and NLRP3 in a sepsis model and try to reveal the mechanism of HSF1 inhibiting the process of brain injury. METHODS In this study, we used wild-type mice and hsf1 -/- mice for in vivo research and PC12 cells for in vitro research. Real-time PCR and Western blot were used to analyze the expression of HSF1, NLRP3, cytokines, and pyrolytic proteins. EthD-III staining was chosen to detect the pyroptosis of the hippocampus and PC12 cells. RESULTS The results showed that HSF1 is negatively related to pyroptosis. The pyroptosis in cells of brain tissue was significantly increased in the hsf1 -/- mouse model compared to hsf1 +/+ mice. In PC12 cells, hsf1 siRNA can upregulate pyroptosis while HSF1-transfected plasmid could inhibit the pyroptosis. HSF1 could negatively regulate the NLRP3 pathway in PC12 cells, while hsf1 siRNA enhanced the pyroptosis in PC12 cells, which could be reversed by nlrp3 siRNA. CONCLUSION These results imply that HSF1 could alleviate sepsis-induced brain injury by inhibiting pyroptosis through the NLRP3-dependent pathway in brain tissue and PC12 cells, suggesting HSF1 as a potential molecular target for treating brain injury in sepsis clinical studies.
Collapse
Affiliation(s)
- Yi-fu He
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi-min Hu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Md. Asaduzzaman Khan
- The Research Centre for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Bo-yao Yu
- Clinical Medicine Five-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yi-cun Sheng
- Clinical Medicine Five-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Xian-zhong Xiao
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Xin-xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Si-pin Tan
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|