1
|
Li W, Guo F, Zeng R, Liang H, Wang Y, Xiong W, Wu H, Yang C, Jin X. CDK4/6 Alters TBK1 Phosphorylation to Inhibit the STING Signaling Pathway in Prostate Cancer. Cancer Res 2024; 84:2588-2606. [PMID: 38861362 DOI: 10.1158/0008-5472.can-23-3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/02/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The efficacy of immunotherapy in patients with prostate cancer is limited due to the "cold" tumor microenvironment and the paucity of neoantigens. The STING-TBK1-IRF3 signaling axis is involved in innate immunity and has been increasingly recognized as a candidate target for cancer immunotherapy. Here, we found that treatment with CDK4/6 inhibitors stimulates the STING pathway and enhances the antitumor effect of STING agonists in prostate cancer. Mechanistically, CDK4/6 phosphorylated TBK1 at S527 to inactivate the STING signaling pathway independent of RB1 in prostate cancer cells. CDK4/6-mediated phosphorylation of RB1 at S249/T252 also induced the interaction of RB1 with TBK1 to diminish the phosphorylation of TBK1 at S172, which suppressed STING pathway activation. Overall, this study showed that CDK4/6 suppresses the STING pathway through RB1-dependent and RB1-independent pathways, indicating that CDK4/6 inhibition could be a potential strategy to overcome immunosuppression in prostate cancer. Significance: Inhibiting CDK4/6 activates STING-TBK1-IRF3 signaling in prostate cancer by regulating TBK1 phosphorylation, suggesting that the combination of CDK4/6 inhibitors and STING agonists could be an effective approach to stimulate innate immunity.
Collapse
Affiliation(s)
- Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruijiang Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Huaiyuan Liang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Uro-Oncology Institute of Central South University, Changsha, China
| |
Collapse
|
2
|
Thomas R, Jerome JM, Krieger KL, Ashraf N, Rowley DR. The reactive stroma response regulates the immune landscape in prostate cancer. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2024; 8:249-77. [DOI: 10.20517/jtgg.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Prostate cancer remains the most commonly diagnosed and the second leading cause of cancer-related deaths in men in the United States. The neoplastic transformation of prostate epithelia, concomitant with modulations in the stromal compartment, known as reactive stromal response, is critical for the growth, development, and progression of prostate cancer. Reactive stroma typifies an emergent response to disrupted tissue homeostasis commonly observed in wound repair and pathological conditions such as cancer. Despite the significance of reactive stroma in prostate cancer pathobiology, our understanding of the ontogeny, phenotypic and functional heterogeneity, and reactive stromal regulation of the immune microenvironment in prostate cancer remains limited. Traditionally characterized to have an immunologically "cold" tumor microenvironment, prostate cancer presents significant challenges for advancing immunotherapy compared to other solid tumors. This review explores the detrimental role of reactive stroma in prostate cancer, particularly its immunomodulatory function. Understanding the molecular characteristics and dynamic transcriptional program of the reactive stromal populations in tandem with tumor progression could offer insights into enhancing immunotherapy efficacy against prostate cancer.
Collapse
|
3
|
Archer S, Brailey PM, Song M, Bartlett PD, Figueiredo I, Gurel B, Guo C, Brucklacher-Waldert V, Thompson HL, Akinwale J, Boyle SE, Rossant C, Birkett NR, Pizzey J, Maginn M, Legg J, Williams R, Johnston CM, Bland-Ward P, de Bono JS, Pierce AJ. CB307: A Dual Targeting Costimulatory Humabody VH Therapeutic for Treating PSMA-Positive Tumors. Clin Cancer Res 2024; 30:1595-1606. [PMID: 38593226 PMCID: PMC11016891 DOI: 10.1158/1078-0432.ccr-23-3052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 02/05/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE CD137 is a T- and NK-cell costimulatory receptor involved in consolidating immunologic responses. The potent CD137 agonist urelumab has shown clinical promise as a cancer immunotherapeutic but development has been hampered by on-target off-tumor toxicities. A CD137 agonist targeted to the prostate-specific membrane antigen (PSMA), frequently and highly expressed on castration-resistant metastatic prostate cancer (mCRPC) tumor cells, could bring effective immunotherapy to this immunologically challenging to address disease. EXPERIMENTAL DESIGN We designed and manufactured CB307, a novel half-life extended bispecific costimulatory Humabody VH therapeutic to elicit CD137 agonism exclusively in a PSMA-high tumor microenvironment (TME). The functional activity of CB307 was assessed in cell-based assays and in syngeneic mouse antitumor pharmacology studies. Nonclinical toxicology and toxicokinetic properties of CB307 were assessed in a good laboratory practice (GLP) compliant study in cynomolgus macaques. RESULTS CB307 provides effective CD137 agonism in a PSMA-dependent manner, with antitumor activity both in vitro and in vivo, and additional activity when combined with checkpoint inhibitors. A validated novel PSMA/CD137 IHC assay demonstrated a higher prevalence of CD137-positive cells in the PSMA-expressing human mCRPC TME with respect to primary lesions. CB307 did not show substantial toxicity in nonhuman primates and exhibited a plasma half-life supporting weekly clinical administration. CONCLUSIONS CB307 is a first-in-class immunotherapeutic that triggers potent PSMA-dependent T-cell activation, thereby alleviating toxicologic concerns against unrestricted CD137 agonism.
Collapse
Affiliation(s)
- Sophie Archer
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Phillip M. Brailey
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Minjung Song
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Phillip D. Bartlett
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Ines Figueiredo
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
| | - Bora Gurel
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
| | - Christina Guo
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
- Prostate Cancer Targeted Therapies Group, Royal Marsden Hospital, Sutton, United Kingdom
| | | | | | - Jude Akinwale
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Samantha E. Boyle
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Christine Rossant
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Neil R. Birkett
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Julia Pizzey
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Mark Maginn
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - James Legg
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Richard Williams
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Colette M. Johnston
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Philip Bland-Ward
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Johann S. de Bono
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
- Prostate Cancer Targeted Therapies Group, Royal Marsden Hospital, Sutton, United Kingdom
| | - Andrew J. Pierce
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
4
|
von Amsberg G, Todenhöfer T. [Metastatic castration-resistant prostate cancer-emerging trends in therapy]. UROLOGIE (HEIDELBERG, GERMANY) 2023; 62:1289-1294. [PMID: 37955661 DOI: 10.1007/s00120-023-02223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND An increasing understanding of the cellular processes involved in growth, metastasis and development of resistance enable the development of new treatment strategies for advanced prostate cancer. OBJECTIVES Using selected examples, the aim of this report is to present current developments to the reader and to give an outlook on possible upcoming changes in the treatment of advanced prostate cancer. MATERIALS AND METHODS Narrative report based on expert consensus, supported by a literature search in PubMed (MEDLINE) and the abstract databases of the American Society of Clinical Oncology (ASCO) and European Society of Medical Oncology (ESMO). Examples were selected to illustrate current developments without claiming completeness. RESULTS The androgen receptor (AR) signal transduction pathway remains a focus of scientific interest. Androgen synthesis inhibitors and AR degraders are promising new approaches to overcome resistance mediated by AR mutations or splice variants. Inhibition of key switch sites of alternative signaling pathways such as AKT or CDK4/6 provide additional treatment options, including combinational strategies through a tight linkage with the AR signaling pathway. A better understanding of tumor microenvironment and immune response is required for novel immunotherapeutic strategies using bispecific T‑cell engagers (BiTEs) and chimeric antigen receptor (CAR) T cells. CONCLUSION New treatment strategies give hope that we will be able to intervene even more effectively in the course of disease of advanced prostate cancer in the future. However, a major challenge, especially for the implementation of targeted treatment approaches, is likely to be the heterogeneity of tumor progression not only inter- but also intrapersonally.
Collapse
Affiliation(s)
- Gunhild von Amsberg
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg Eppendorf, 20246, Martinstraße 52, Hamburg, Deutschland
- Martini Klinik, Hamburg, Deutschland
| | - Tilman Todenhöfer
- Studienpraxis Urologie, Steinengrabenstr. 17, 72622, Nürtingen, Deutschland.
- Medizinische Fakultät, Universität Tübingen, Tübingen, Deutschland.
| |
Collapse
|
5
|
Noori M, Azizi S, Mahjoubfar A, Abbasi Varaki F, Fayyaz F, Mousavian AH, Bashash D, Kardoust Parizi M, Kasaeian A. Efficacy and safety of immune checkpoint inhibitors for patients with prostate cancer: a systematic review and meta-analysis. Front Immunol 2023; 14:1181051. [PMID: 38022569 PMCID: PMC10644317 DOI: 10.3389/fimmu.2023.1181051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/04/2023] [Indexed: 12/01/2023] Open
Abstract
Immunotherapy has revolutionized the treatment paradigm of many cancers, however, its effectiveness in prostate cancer patients is still under question. In the present systematic review and meta-analysis, we sought for assessing the efficacy and safety of Immune checkpoint inhibitors (ICIs) in patients with prostate cancer. PubMed, Scopus, Web of Science, and EMBASE databases were searched on Aguste 19, 2022. Thirty five studies met the eligibility criteria. The median overall survival (mOS) of all treatments was 14.1 months, with the longest and shortest mOS was seen among patients who received anti-CTLA-4 monotherapy and anti-PD-1/PD-L1+anti-CTLA-4 regimen at 24.9 and 9.2 months, respectively. Noteworthy, all types of adverse events had the lowest incidence in the anti-PD-1/PD-L1 monotherapy group. Considering the ICI monotherapy regimens, we found that fatigue, diarrhea, and infusion reaction had the highest incidence rates. Future studies evaluating the efficacy and safety of novel combination therapies with ICIs are warranted.
Collapse
Affiliation(s)
- Maryam Noori
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi Azizi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Mahjoubfar
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhan Abbasi Varaki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farimah Fayyaz
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amir-Hossein Mousavian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Kardoust Parizi
- Department of Urology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Amir Kasaeian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Gong Z, Zhang H, Ge Y, Wang P. Long noncoding RNA MIAT regulates TP53 ubiquitination and expedites prostate adenocarcinoma progression by recruiting TBL1X. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119527. [PMID: 37356458 DOI: 10.1016/j.bbamcr.2023.119527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Despite recent advances in cancer immunotherapy, their efficacy for treating patients with prostate adenocarcinoma (PRAD) is low due to complex immune evasion mechanisms. However, the function of long non-coding RNA (lncRNAs) in immune evasion has not been fully clarified. This study aimed to expound the role of myocardial infarction-associated transcript (MIAT), a lncRNA significantly upregulated in three PRAD-associated datasets, in immune evasion and try to reveal the potential mechanism. MIAT was highly expressed in PRAD tissues and predicted poor prognosis, and suppression of MIAT inhibited the malignant biological behavior of PRAD cells. Moreover, the depletion of MIAT promoted the immune response of CD8+ T cells and hampered the immune evasion of PRAD cells. In addition, MIAT downregulated TP53 protein expression by recruiting transducin beta-like protein 1X (TBL1X) for ubiquitination modification. Silencing of TP53 or overexpression of TBL1X was enough to abate the tumor suppressive effects of MIAT knockdown in vitro and in vivo. Our results provide evidence for a novel regulation mechanism of CD8+ T cells in PRAD and MIAT may serve as a potential therapeutic target in PRAD.
Collapse
Affiliation(s)
- Zheng Gong
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Huijing Zhang
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Yuntian Ge
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Peng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China.
| |
Collapse
|
7
|
Williams NR. Analysis of Clinical Trials and Review of Recent Advances in Therapy Decisions for Locally Advanced Prostate Cancer. J Pers Med 2023; 13:938. [PMID: 37373928 DOI: 10.3390/jpm13060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the implementation of screening and early detection in many countries, the prostate cancer mortality rate remains high, particularly when the cancer is locally advanced. Targeted therapies with high efficacy and minimal harms should be particularly beneficial in this group, and several new approaches show promise. This article briefly analyses relevant clinical studies listed on ClinicalTrials.gov, combined with a short literature review that considers new therapeutic approaches that can be investigated in future clinical trials. Therapies using gold nanoparticles are of special interest in low-resource settings as they can localize and enhance the cancer-cell killing potential of X-rays using equipment that is already widely available.
Collapse
Affiliation(s)
- Norman R Williams
- UCL Division of Surgery & Interventional Science, 3rd Floor, Charles Bell House, 43-45 Foley Street, London W1W 7TY, UK
| |
Collapse
|
8
|
Stone TW, Williams RO. Interactions of IDO and the Kynurenine Pathway with Cell Transduction Systems and Metabolism at the Inflammation-Cancer Interface. Cancers (Basel) 2023; 15:cancers15112895. [PMID: 37296860 DOI: 10.3390/cancers15112895] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
The mechanisms underlying a relationship between inflammation and cancer are unclear, but much emphasis has been placed on the role of tryptophan metabolism to kynurenine and downstream metabolites, as these make a substantial contribution to the regulation of immune tolerance and susceptibility to cancer. The proposed link is supported by the induction of tryptophan metabolism by indoleamine-2,3-dioxygenase (IDO) or tryptophan-2,3-dioxygenase (TDO), in response to injury, infection or stress. This review will summarize the kynurenine pathway and will then focus on the bi-directional interactions with other transduction pathways and cancer-related factors. The kynurenine pathway can interact with and modify activity in many other transduction systems, potentially generating an extended web of effects other than the direct effects of kynurenine and its metabolites. Conversely, the pharmacological targeting of those other systems could greatly enhance the efficacy of changes in the kynurenine pathway. Indeed, manipulating those interacting pathways could affect inflammatory status and tumor development indirectly via the kynurenine pathway, while pharmacological modulation of the kynurenine pathway could indirectly influence anti-cancer protection. While current efforts are progressing to account for the failure of selective IDO1 inhibitors to inhibit tumor growth and to devise means of circumventing the issue, it is clear that there are wider factors involving the relationship between kynurenines and cancer that merit detailed consideration as alternative drug targets.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
9
|
Tennstedt P, Oh-Hohenhorst SJ. Advances, Limitations and Future Challenges in the Management of Immunotherapy for Hematological Diseases and Solid Tumors. Int J Mol Sci 2023; 24:ijms24108812. [PMID: 37240158 DOI: 10.3390/ijms24108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Our immune system is able to attack cancer cells by recognizing cellular mistakes and destroying them [...].
Collapse
Affiliation(s)
- Pierre Tennstedt
- Martini-Klinik Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Su Jung Oh-Hohenhorst
- Martini-Klinik Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
10
|
Yu X, Liu R, Gao W, Wang X, Zhang Y. Single-cell omics traces the heterogeneity of prostate cancer cells and the tumor microenvironment. Cell Mol Biol Lett 2023; 28:38. [PMID: 37161356 PMCID: PMC10170780 DOI: 10.1186/s11658-023-00450-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Prostate cancer is one of the more heterogeneous tumour types. In recent years, with the rapid development of single-cell sequencing and spatial transcriptome technologies, researchers have gained a more intuitive and comprehensive understanding of the heterogeneity of prostate cancer. Tumour-associated epithelial cells; cancer-associated fibroblasts; the complexity of the immune microenvironment, and the heterogeneity of the spatial distribution of tumour cells and other cancer-promoting molecules play a crucial role in the growth, invasion, and metastasis of prostate cancer. Single-cell multi-omics biotechnology, especially single-cell transcriptome sequencing, reveals the expression level of single cells with higher resolution and finely dissects the molecular characteristics of different tumour cells. We reviewed the recent literature on prostate cancer cells, focusing on single-cell RNA sequencing. And we analysed the heterogeneity and spatial distribution differences of different tumour cell types. We discussed the impact of novel single-cell omics technologies, such as rich omics exploration strategies, multi-omics joint analysis modes, and deep learning models, on future prostate cancer research. In this review, we have constructed a comprehensive catalogue of single-cell omics studies in prostate cancer. This article aimed to provide a more thorough understanding of the diagnosis and treatment of prostate cancer. We summarised and proposed several key issues and directions on applying single-cell multi-omics and spatial transcriptomics to understand the heterogeneity of prostate cancer. Finally, we discussed single-cell omics trends and future directions in prostate cancer.
Collapse
Affiliation(s)
- Xudong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing Tumour Minimally Invasive Medical Center of Integrated Traditional Chinese and Western Medicine, Beijing, 101121, China
| | - Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Wenfeng Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xuyun Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Yaosheng Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
- Beijing Tumour Minimally Invasive Medical Center of Integrated Traditional Chinese and Western Medicine, Beijing, 101121, China.
| |
Collapse
|
11
|
Sailer V, von Amsberg G, Duensing S, Kirfel J, Lieb V, Metzger E, Offermann A, Pantel K, Schuele R, Taubert H, Wach S, Perner S, Werner S, Aigner A. Experimental in vitro, ex vivo and in vivo models in prostate cancer research. Nat Rev Urol 2023; 20:158-178. [PMID: 36451039 DOI: 10.1038/s41585-022-00677-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/02/2022]
Abstract
Androgen deprivation therapy has a central role in the treatment of advanced prostate cancer, often causing initial tumour remission before increasing independence from signal transduction mechanisms of the androgen receptor and then eventual disease progression. Novel treatment approaches are urgently needed, but only a fraction of promising drug candidates from the laboratory will eventually reach clinical approval, highlighting the demand for critical assessment of current preclinical models. Such models include standard, genetically modified and patient-derived cell lines, spheroid and organoid culture models, scaffold and hydrogel cultures, tissue slices, tumour xenograft models, patient-derived xenograft and circulating tumour cell eXplant models as well as transgenic and knockout mouse models. These models need to account for inter-patient and intra-patient heterogeneity, the acquisition of primary or secondary resistance, the interaction of tumour cells with their microenvironment, which make crucial contributions to tumour progression and resistance, as well as the effects of the 3D tissue network on drug penetration, bioavailability and efficacy.
Collapse
Affiliation(s)
- Verena Sailer
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Gunhild von Amsberg
- Department of Oncology and Hematology, University Cancer Center Hamburg Eppendorf and Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Stefan Duensing
- Section of Molecular Urooncology, Department of Urology, University Hospital Heidelberg and National Center for Tumour Diseases, Heidelberg, Germany
| | - Jutta Kirfel
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Verena Lieb
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Eric Metzger
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Anne Offermann
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Klaus Pantel
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Roland Schuele
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Helge Taubert
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Wach
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Perner
- University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stefan Werner
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Medical Faculty, Leipzig, Germany.
| |
Collapse
|
12
|
Karbach J, Kiselicki D, Brand K, Wahle C, Sinelnikov E, Gustavus D, Hoffmeister H, Prisack HB, Atmaca A, Jäger E. Tumor-infiltrating lymphocytes mediate complete and durable remission in a patient with NY-ESO-1 expressing prostate cancer. J Immunother Cancer 2023; 11:jitc-2022-005847. [PMID: 36627144 PMCID: PMC9835940 DOI: 10.1136/jitc-2022-005847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Adoptive transfer of autologous tumor-specific lymphocytes represents a viable treatment method for patients with advanced malignancies. Here, we report a patient's case with metastatic hormone-refractory New York esophageal squamous cell carcinoma 1 (NY-ESO-1) expressing prostate cancer treated with in vitro expanded tumor-infiltrating lymphocytes (TILs) in conjunction with IL-2 and immune-checkpoint blockade. Complete and durable tumor remission was observed after three TIL infusions consisting of 1.4×109, 2.0×109, and 8.0×109 T cells, respectively, lasting now for more than 3.5 years. Immunological correlates to the clinical development were the decrease of tumor-driven NY-ESO-1 serum antibody and the drop of prostate-specific antigen to <0.01 µg/L. TILs were reactive against cancer-testis antigen NY-ESO-1, individual tumor mutational proteins (eg, PRPF8, TRPS1), and the androgen receptor splice variant 12.
Collapse
Affiliation(s)
- Julia Karbach
- Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Dragan Kiselicki
- Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Kathrin Brand
- Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Claudia Wahle
- Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | | | | | | | | | - Akin Atmaca
- Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Elke Jäger
- Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| |
Collapse
|
13
|
von Amsberg G, Zilles M, Mansour W, Gild P, Alsdorf W, Kaune M, Böckelmann L, Hauschild J, Krisp C, Rohlfing T, Saygi C, Alawi M, Zielinski A, Langebrake C, Oh-Hohenhorst SJ, Perner S, Tilki D, Schlüter H, Graefen M, Dyshlovoy SA, Bokemeyer C. Salvage Chemotherapy with Cisplatin, Ifosfamide, and Paclitaxel in Aggressive Variant of Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2022; 23:ijms232314948. [PMID: 36499277 PMCID: PMC9738104 DOI: 10.3390/ijms232314948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Significant progress has been achieved in the treatment of metastatic castration-resistant prostate cancer (mCRPC). However, results in patients with aggressive variant prostate cancer (AVPC) have been disappointing. Here, we report retrospectively collected data from intensively pretreated AVPC patients (n = 17; 88.2% visceral metastases; 82% elevation of neuroendocrine markers) treated with salvage chemotherapy consisting of cisplatin, ifosfamide, and paclitaxel (TIP). At the interim analysis, 60% of patients showed radiographic response or stable disease (PFS = 2.5 months; OS = 6 months). In men who responded to chemotherapy, an OS > 15 months was observed. Preclinical analyses confirmed the high activity of the TIP regimen, especially in docetaxel-resistant prostate cancer cells. This effect was primarily mediated by increased cisplatin sensitivity in the emergence of taxane resistance. Proteomic and functional analyses identified a lower DNA repair capacity and cell cycle machinery deficiency to be causative. In contrast, paclitaxel showed inconsistent effects, partially antagonizing cisplatin and ifosfamide in some AVPC models. Consequently, paclitaxel has been excluded from the TIP combination for future patients. In summary, we report for the first time the promising efficacy of TIP as salvage therapy in AVPC. Our preclinical data indicate a pivotal role for cisplatin in overcoming docetaxel resistance.
Collapse
Affiliation(s)
- Gunhild von Amsberg
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Martini-Klinik Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Correspondence: ; Tel.: +49-179-5137710
| | - Mirjam Zilles
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wael Mansour
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Philipp Gild
- Department of Urology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Winfried Alsdorf
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Moritz Kaune
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lukas Böckelmann
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jessica Hauschild
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Martini-Klinik Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Krisp
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tina Rohlfing
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ceren Saygi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alexandra Zielinski
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claudia Langebrake
- Pharmacy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Su Jung Oh-Hohenhorst
- Martini-Klinik Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Urology, Centre Hospitalier de l’Université de Montreal (CHUM)/Centre de recherche du CHUM, Montreal, QC 3840, Canada
| | - Sven Perner
- Institute of Pathology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Pathology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Urology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Markus Graefen
- Martini-Klinik Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sergey A. Dyshlovoy
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Martini-Klinik Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|