1
|
Ilbeigi K, Mabille D, Matheeussen A, Hendrickx R, Claes M, Van Reet N, Anthonissen R, Hulpia F, Lin C, Maes L, Regnault C, Whitfield P, Roy R, Ungogo MA, Sterckx YGJ, De Winter H, Mertens B, Bundschuh M, De Koning HP, Van Calenbergh S, Caljon G. Discovery and Development of an Advanced Lead for the Treatment of African Trypanosomiasis. ACS Infect Dis 2024. [PMID: 39665421 DOI: 10.1021/acsinfecdis.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
African trypanosomiasis is a widespread disease of human and veterinary importance caused by various Trypanosoma spp. with a globally devastating impact and a need for novel treatment options. We here provide a comprehensive preclinical evaluation of nucleoside analogues, 6-thioether-modified tubercidins, with curative activity against African trypanosomiasis. Promising hits were identified following in vitro screening against the most relevant trypanosome species. Selected hit compounds were extensively tested for in vitro metabolic stability, potency in in vivo mouse models for the various species, genotoxicity in an in vitro testing battery, and mode of action studies (i.e., genome-wide RNA interference library screening and metabolomics). Among the nucleoside analogues, analogue 3 was curative in mouse models with no indication of genotoxicity and a low ecotoxicological footprint. Mode-of-action studies revealed that P1-type nucleoside transporters and adenosine kinase are involved in the uptake and activation, respectively. Analogue 3 represents a potent, advanced lead fitting the preferred target product profile for a broad-spectrum trypanocide regardless of the causative species.
Collapse
Affiliation(s)
- Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Rik Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Mathieu Claes
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Nick Van Reet
- Protozoology Research Group, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Roel Anthonissen
- Sciensano, SD Chemical and Physical Health Risks, 1050 Brussels, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Cai Lin
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Clement Regnault
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1BD, U.K
| | - Phillip Whitfield
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1BD, U.K
| | - Rajdeep Roy
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
| | - Marzuq A Ungogo
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, 2610 Wilrijk, Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Birgit Mertens
- Sciensano, SD Chemical and Physical Health Risks, 1050 Brussels, Belgium
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Harry P De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
2
|
Ungogo MA, de Koning HP. Drug resistance in animal trypanosomiases: Epidemiology, mechanisms and control strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100533. [PMID: 38555795 PMCID: PMC10990905 DOI: 10.1016/j.ijpddr.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Animal trypanosomiasis (AT) is a complex of veterinary diseases known under various names such as nagana, surra, dourine and mal de caderas, depending on the country, the infecting trypanosome species and the host. AT is caused by parasites of the genus Trypanosoma, and the main species infecting domesticated animals are T. brucei brucei, T. b. rhodesiense, T. congolense, T. simiae, T. vivax, T. evansi and T. equiperdum. AT transmission, again depending on species, is through tsetse flies or common Stomoxys and tabanid flies or through copulation. Therefore, the geographical spread of all forms of AT together is not restricted to the habitat of a single vector like the tsetse fly and currently includes almost all of Africa, and most of South America and Asia. The disease is a threat to millions of companion and farm animals in these regions, creating a financial burden in the billions of dollars to developing economies as well as serious impacts on livestock rearing and food production. Despite the scale of these impacts, control of AT is neglected and under-resourced, with diagnosis and treatments being woefully inadequate and not improving for decades. As a result, neither the incidence of the disease, nor the effectiveness of treatment is documented in most endemic countries, although it is clear that there are serious issues of resistance to the few old drugs that are available. In this review we particularly look at the drugs, their application to the various forms of AT, and their mechanisms of action and resistance. We also discuss the spread of veterinary trypanocide resistance and its drivers, and highlight current and future strategies to combat it.
Collapse
Affiliation(s)
- Marzuq A Ungogo
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom; School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
3
|
Oaikhena EE, Yahaya UA, Abdulsalami SM, Egbe NL, Adeyemi MM, Ungogo MA, Ebiloma GU, Zoiku FK, Fordjour PA, Elati HAA, Quashie NB, Igoli JO, Gray AI, Lawson C, Ferro VA, de Koning HP. The activities of suaveolol and other compounds from Hyptis suaveolens and Momordica charantia against the aetiological agents of African trypanosomiasis, leishmaniasis and malaria. Exp Parasitol 2024; 263-264:108807. [PMID: 39043327 DOI: 10.1016/j.exppara.2024.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/24/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
African trypanosomiasis and malaria are among the most severe health challenges to humans and livestock in Africa and new drugs are needed. Leaves of Hyptis suaveolens Kuntze (Lamiaceae) and Momordica charantia L. (Cucurbitaceae) were extracted with hexane, ethyl acetate, and then methanol, and subjected to silica gel column chromatography. Structures of six isolated compounds were elucidated through NMR and HR-EIMS spectrometry. Callistrisic acid, dehydroabietinol, suaveolic acid, suaveolol, and a mixture of suaveolol and suaveolic acid (SSA) were obtained from H. suaveolens, while karavilagenin D and momordicin I acetate were obtained from M. charantia. The isolated biomolecules were tested against trypomastigotes of Trypanosoma brucei brucei and T. congolense, and against Plasmodium falciparum. The most promising EC50 values were obtained for the purified suaveolol fraction, at 2.71 ± 0.36 μg/mL, and SSA, exhibiting an EC50 of 1.56 ± 0.17 μg/mL against T. b. brucei trypomastigotes. Suaveolic acid had low activity against T. b. brucei but displayed moderate activity against T. congolense trypomastigotes at 11.1 ± 0.5 μg/mL. Suaveolol and SSA were also tested against T. evansi, T. equiperdum, Leishmania major and L. mexicana but the antileishmanial activity was low. Neither of the active compounds, nor the mixture of the two, displayed any cytotoxic effect on human foreskin fibroblast (HFF) cells at even the highest concentration tested, being 200 μg/mL. We conclude that suaveolol and its mixture possessed significant and selective trypanocidal activity.
Collapse
Affiliation(s)
- Enimie E Oaikhena
- Department of Biotechnology, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Umar A Yahaya
- Department of Biological Sciences, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Sani M Abdulsalami
- Department of Biotechnology, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Nkechi L Egbe
- Department of Biotechnology, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Modupe M Adeyemi
- Department of Chemistry, Nigerian Defence Academy, Kaduna, Kaduna State, Nigeria
| | - Marzuq A Ungogo
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH8 PYL, UK
| | - Godwin U Ebiloma
- School of Science, Engineering & Environment, University of Salford, M5 4NT, Manchester, UK
| | - Felix K Zoiku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Prince A Fordjour
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Hamza A A Elati
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Pharmacology and Toxicology, Pharmacy College, University of Elmergib, Al Khums, Libya
| | - Neils B Quashie
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Ghana; Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Ghana
| | - John O Igoli
- Department of Chemistry, Joseph Sarwuan Tarka University, PMB 2373, Makurdi, Benue State, Nigeria; Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Alexander I Gray
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Christopher Lawson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Harry P de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
4
|
Janse van Rensburg H, N’Da DD, Suganuma K. In Vitro and In Vivo Trypanocidal Efficacy of Nitrofuryl- and Nitrothienylazines. ACS OMEGA 2023; 8:43088-43098. [PMID: 38024678 PMCID: PMC10652724 DOI: 10.1021/acsomega.3c06508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
African trypanosomiasis is a vector-borne disease of animals and humans in the tsetse fly belt of Africa. Trypanosoma congolense ("nagana") is the most pathogenic trypanosome in livestock and causes high morbidity and mortality rates among cattle. In the absence of effective preventative vaccines, the management of trypanosomiasis relies on chemoprophylaxis and/or -therapy. However, the trypanocides in clinical use exhibit poor oral bioavailability and toxicity, and therapeutic failures occur because of resistant strains. Because nitrofurantoin displayed, in addition to its clinical use, promising antiparasitic activity, the current study was conducted to evaluate the in vitro trypanocidal activity and preliminary in vivo treatment efficacy of previously synthesized nitrofuranylazines. The trypanocidal activity of these nitrofuran derivatives varied among the evaluated trypanosome species; however, T. congolense strain IL3000 was more susceptible than other animal and human trypanosomes. The nitrofurylazines 4a (IC50 0.04 μM; SI > 7761) and 7a (IC50 0.03 μM; SI > 9542) as well as the nitrothienylazine 8b (IC50 0.04 μM; SI 232), with nanomolar IC50 values, were revealed as early antitrypanosomal leads. Although these derivatives showed strong trypanocidal activity in vitro, no in vivo treatment efficacy was observed in T. congolense IL3000 infected mice after both oral and intraperitoneal administration in a preliminary study. This was attributed to the poor solubility of the test compounds in the in vivo testing media. Indeed, a challenge in drug discovery is finding a balance between the physicochemical properties of a drug candidate, particularly lipophilicity and water solubility, and maintaining adequate potency to provide an effective dose. Hence, future chemical modifications may be required to generate lead-like to lead-like nitrofuranylazines that possess optimal physicochemical and pharmacokinetic properties while retaining in vitro and, ultimately, in vivo trypanocidal efficacy.
Collapse
Affiliation(s)
| | - David D. N’Da
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Keisuke Suganuma
- National
Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
5
|
Nué-Martinez JJ, Cisneros D, Moreno-Blázquez MD, Fonseca-Berzal C, Manzano JI, Kraeutler D, Ungogo MA, Aloraini MA, Elati HAA, Ibáñez-Escribano A, Lagartera L, Herraiz T, Gamarro F, de Koning HP, Gómez-Barrio A, Dardonville C. Synthesis and Biophysical and Biological Studies of N-Phenylbenzamide Derivatives Targeting Kinetoplastid Parasites. J Med Chem 2023; 66:13452-13480. [PMID: 37729094 PMCID: PMC10578353 DOI: 10.1021/acs.jmedchem.3c00697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 09/22/2023]
Abstract
The AT-rich mitochondrial DNA (kDNA) of trypanosomatid parasites is a target of DNA minor groove binders. We report the synthesis, antiprotozoal screening, and SAR studies of three series of analogues of the known antiprotozoal kDNA binder 2-((4-(4-((4,5-dihydro-1H-imidazol-3-ium-2-yl)amino)benzamido)phenyl)amino)-4,5-dihydro-1H-imidazol-3-ium (1a). Bis(2-aminoimidazolines) (1) and bis(2-aminobenzimidazoles) (2) showed micromolar range activity against Trypanosoma brucei, whereas bisarylimidamides (3) were submicromolar inhibitors of T. brucei, Trypanosoma cruzi, and Leishmania donovani. None of the compounds showed relevant activity against the urogenital, nonkinetoplastid parasite Trichomonas vaginalis. We show that series 1 and 3 bind strongly and selectively to the minor groove of AT DNA, whereas series 2 also binds by intercalation. The measured pKa indicated different ionization states at pH 7.4, which correlated with the DNA binding affinities (ΔTm) for series 2 and 3. Compound 3a, which was active and selective against the three parasites and displayed adequate metabolic stability, is a fine candidate for in vivo studies.
Collapse
Affiliation(s)
- J. Jonathan Nué-Martinez
- Instituto
de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
- PhD
Programme in Medicinal Chemistry, Doctoral School, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - David Cisneros
- Instituto
de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
- PhD
Programme in Medicinal Chemistry, Doctoral School, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | | | - Cristina Fonseca-Berzal
- Departamento
de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - José Ignacio Manzano
- Instituto
de Parasitología y Biomedicina “Löpez Neyra”,
IPBLN-CSIC, Parque Tecnolögico
de Ciencias de la Salud, 18016 Granada, Spain
| | - Damien Kraeutler
- Instituto
de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Marzuq A. Ungogo
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, G12 8TA Glasgow, U.K.
| | - Maha A. Aloraini
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, G12 8TA Glasgow, U.K.
| | - Hamza A. A. Elati
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, G12 8TA Glasgow, U.K.
| | - Alexandra Ibáñez-Escribano
- Departamento
de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Laura Lagartera
- Instituto
de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Tomás Herraiz
- Instituto
de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN−CSIC, José Antonio Novais 10, Ciudad
Universitaria, 28040 Madrid, Spain
| | - Francisco Gamarro
- Instituto
de Parasitología y Biomedicina “Löpez Neyra”,
IPBLN-CSIC, Parque Tecnolögico
de Ciencias de la Salud, 18016 Granada, Spain
| | - Harry P. de Koning
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, G12 8TA Glasgow, U.K.
| | - Alicia Gómez-Barrio
- Departamento
de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | | |
Collapse
|
6
|
Minet C, Chantal I, Berthier D. Recent advances in genome editing of bloodstream forms of Trypanosoma congolense using CRISPR-Cas9 ribonucleoproteins: Proof of concept. Exp Parasitol 2023; 252:108589. [PMID: 37516291 DOI: 10.1016/j.exppara.2023.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
African Animal Trypanosomosis (AAT or Nagana) is a vector-borne disease caused by Trypanosomatidae, genus Trypanosoma. The disease is transmitted by the bite of infected hematophagous insects, mainly tsetse flies but also other blood-sucking insects including stomoxes and tabanids. Although many trypanosome species infect animals, the main agents responsible for this disease with a strong socio-economic and veterinary health impact are Trypanosoma congolense (T. congolense or Tc), Trypanosoma vivax (T.vivax), and to a lesser extent, Trypanosoma brucei brucei (T.brucei brucei or Tbb). These parasites mainly infect livestock, including cattle, in sub-Saharan Africa, with major repercussions in terms of animal productivity and poverty for populations which are often already very poor. As there is currently no vaccine, the fight against the disease is primarily based on diagnosis, treatment and vector control. To develop new tools (particularly therapeutic tools) to fight against the disease, we need to know both the biology and the genes involved in the pathogenicity and virulence of the parasites. To date, unlike for Trypanosoma brucei (T.brucei) or Trypanosoma cruzi (T.cruzi), genome editing tools has been relatively little used to study T. congolense. We present an efficient, reproducible and stable CRISPR-Cas9 genome editing system for use in Tc bloodstream forms (Tc-BSF). This plasmid-free system is based on transient expression of Cas9 protein and the use of a ribonucleoprotein formed by the Cas9 and sgRNA complex. This is the first proof of concept of genome editing using CRISPR-Cas9 ribonucleoproteins on Tc-BSF. This adapted protocol enriches the "toolbox" for the functional study of genes of interest in blood forms of the Trypanosoma congolense. This proof of concept is an important step for the scientific community working on the study of trypanosomes and opens up new perspectives for the control of and fight against animal trypanosomosis.
Collapse
Affiliation(s)
- Cécile Minet
- CIRAD, UMR INTERTRYP, F-34398, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France.
| | - Isabelle Chantal
- CIRAD, UMR INTERTRYP, F-34398, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - David Berthier
- CIRAD, UMR INTERTRYP, F-34398, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| |
Collapse
|
7
|
Rufa’i FA, Baecker D, Mukhtar MD. Phytochemical Screening, GC-MS Analysis, and Evaluating In Vivo Antitrypanosomal Effects of a Methanolic Extract of Garcinia kola Nuts on Rats. Antibiotics (Basel) 2023; 12:antibiotics12040713. [PMID: 37107074 PMCID: PMC10135259 DOI: 10.3390/antibiotics12040713] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Trypanosomiasis is a serious disease that affects both humans and animals, causing social and economic losses. Efforts to find new therapeutic approaches are warranted to improve treatment options. Therefore, the purpose of this communication includes the phytochemical screening of a methanolic extract of Garcinia kola nuts and the in vivo evaluation of its biological activity against rats infected with Trypanosoma brucei brucei and treated with 4 different concentrations of the extract (0.01, 0.1, 1, and 10 mg/kg). Treatment with suramin served as a positive control, while the negative control received no drug. Since the general toxicity of the extract could be ruled out, efficacy was evaluated based on physiological changes, such as induction of trypanosome parasitemia, influence on body temperature, and body weight. Survival was assessed during this study. Physical parameters, behavioral characteristics, and various hematological indices were also monitored. Based on the (patho)physiological and behavioral parameters (e.g., no parasitemia, no increase in body temperature, an increase in body weight, no loss of condition, no alopecia, and no gangrene), the efficacy of the extract was evident, which was also confirmed by 100% survival, while in the negative control, all rats died during the observation period. Since overall very similar results were obtained as a result of treatment with the established suramin, the in vivo antitrypanosomal activity of a methanolic extract of G. kola nuts on rats can be demonstrated in this communication. This opens the way, for example, for further development of drug formulations based on this methanolic extract.
Collapse
Affiliation(s)
- Fatihu Ahmad Rufa’i
- Department of Microbiology, Faculty of Life Sciences, Bayero University, Kano PMB 3011, Nigeria
- Kano Liaison Office, Nigerian Institute for Trypanosomiasis (and Onchocerciasis) Research, Kaduna PMB 2077, Nigeria
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| | - Muhammad Dauda Mukhtar
- Department of Microbiology, Faculty of Life Sciences, Bayero University, Kano PMB 3011, Nigeria
| |
Collapse
|
8
|
Ungogo MA, Aldfer MM, Natto MJ, Zhuang H, Chisholm R, Walsh K, McGee M, Ilbeigi K, Asseri JI, Burchmore RJS, Caljon G, Van Calenbergh S, De Koning HP. Cloning and Characterization of Trypanosoma congolense and T. vivax Nucleoside Transporters Reveal the Potential of P1-Type Carriers for the Discovery of Broad-Spectrum Nucleoside-Based Therapeutics against Animal African Trypanosomiasis. Int J Mol Sci 2023; 24:ijms24043144. [PMID: 36834557 PMCID: PMC9960827 DOI: 10.3390/ijms24043144] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
African Animal Trypanosomiasis (AAT), caused predominantly by Trypanosoma brucei brucei, T. vivax and T. congolense, is a fatal livestock disease throughout Sub-Saharan Africa. Treatment options are very limited and threatened by resistance. Tubercidin (7-deazaadenosine) analogs have shown activity against individual parasites but viable chemotherapy must be active against all three species. Divergence in sensitivity to nucleoside antimetabolites could be caused by differences in nucleoside transporters. Having previously characterized the T. brucei nucleoside carriers, we here report the functional expression and characterization of the main adenosine transporters of T. vivax (TvxNT3) and T. congolense (TcoAT1/NT10), in a Leishmania mexicana cell line ('SUPKO') lacking adenosine uptake. Both carriers were similar to the T. brucei P1-type transporters and bind adenosine mostly through interactions with N3, N7 and 3'-OH. Expression of TvxNT3 and TcoAT1 sensitized SUPKO cells to various 7-substituted tubercidins and other nucleoside analogs although tubercidin itself is a poor substrate for P1-type transporters. Individual nucleoside EC50s were similar for T. b. brucei, T. congolense, T. evansi and T. equiperdum but correlated less well with T. vivax. However, multiple nucleosides including 7-halogentubercidines displayed pEC50>7 for all species and, based on transporter and anti-parasite SAR analyses, we conclude that nucleoside chemotherapy for AAT is viable.
Collapse
Affiliation(s)
- Marzuq A. Ungogo
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Mustafa M. Aldfer
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Manal J. Natto
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Hainan Zhuang
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Robyn Chisholm
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Katy Walsh
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - MarieClaire McGee
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, B-2610 Wilrijk, Belgium
| | - Jamal Ibrahim Asseri
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Richard J. S. Burchmore
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, B-2610 Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Harry P. De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Correspondence:
| |
Collapse
|
9
|
Tentellino C, Tipping WJ, McGee LMC, Bain LM, Wetherill C, Laing S, Tyson-Hirst I, Suckling CJ, Beveridge R, Scott FJ, Faulds K, Graham D. Ratiometric imaging of minor groove binders in mammalian cells using Raman microscopy. RSC Chem Biol 2022; 3:1403-1415. [PMID: 36544571 PMCID: PMC9709774 DOI: 10.1039/d2cb00159d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2023] Open
Abstract
Quantitative drug imaging in live cells is a major challenge in drug discovery and development. Many drug screening techniques are performed in solution, and therefore do not consider the impact of the complex cellular environment in their result. As such, important features of drug-cell interactions may be overlooked. In this study, Raman microscopy is used as a powerful technique for semi-quantitative imaging of Strathclyde-minor groove binders (S-MGBs) in mammalian cells under biocompatible imaging conditions. Raman imaging determined the influence of the tail group of two novel minor groove binders (S-MGB-528 and S-MGB-529) in mammalian cell models. These novel S-MGBs contained alkyne moieties which enabled analysis in the cell-silent region of the Raman spectrum. The intracellular uptake concentration, distribution and mechanism were evaluated as a function of the pK a of the tail group, morpholine and amidine, for S-MGB-528 and S-MGB-529, respectively. Although S-MGB-529 had a higher binding affinity to the minor groove of DNA in solution-phase measurements, the Raman imaging data indicated that S-MGB-528 showed a greater degree of intracellular accumulation. Furthermore, using high resolution stimulated Raman scattering (SRS) microscopy, the initial localisation of S-MGB-528 was shown to be in the nucleus before accumulation in the lysosome, which was demonstrated using a multimodal imaging approach. This study highlights the potential of Raman spectroscopy for semi-quantitative drug imaging studies and highlights the importance of imaging techniques to investigate drug-cell interactions, to better inform the drug design process.
Collapse
Affiliation(s)
- Christian Tentellino
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde Glasgow G1 1RD UK
| | - William J. Tipping
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of StrathclydeGlasgow G1 1RDUK
| | - Leah M. C. McGee
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of StrathclydeGlasgowG1 1XLUK
| | - Laura M. Bain
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of StrathclydeGlasgowG1 1XLUK
| | - Corinna Wetherill
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde Glasgow G1 1RD UK
| | - Stacey Laing
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde Glasgow G1 1RD UK
| | - Izaak Tyson-Hirst
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde Glasgow G1 1XL UK
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of StrathclydeGlasgowG1 1XLUK
| | - Rebecca Beveridge
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde Glasgow G1 1XL UK
| | - Fraser J. Scott
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of StrathclydeGlasgowG1 1XLUK
| | - Karen Faulds
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde Glasgow G1 1RD UK
| | - Duncan Graham
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde Glasgow G1 1RD UK
| |
Collapse
|
10
|
Campagnaro GD. Purine Transporters as Efficient Carriers for Anti-kinetoplastid Molecules: 3'-Deoxytubercidin versus Trypanosomes. ACS Infect Dis 2022; 8:1727-1730. [PMID: 35925865 DOI: 10.1021/acsinfecdis.2c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
After a growing interest in the function of purine transporters in protozoa during the 1990s and early 2000s, the area experienced a lull phase. Recently, however, the potential of tubercidin derivatives, particularly 3'-deoxytubercidin, to cure Trypanosoma brucei infection seems to have started a new wave of interest in the subject, with a large number of newly designed compounds and extensive in vitro testing against T. brucei, Trypanosoma cruzi, and Leishmania spp. Understanding the biochemical properties of purine transporters and using them as drug carriers seem to be emerging once again as a valuable tactic in the fight against neglected diseases.
Collapse
Affiliation(s)
- Gustavo Daniel Campagnaro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900 São Paulo, Brazil
| |
Collapse
|
11
|
Nucleoside Transport and Nucleobase Uptake Null Mutants in Leishmania mexicana for the Routine Expression and Characterization of Purine and Pyrimidine Transporters. Int J Mol Sci 2022; 23:ijms23158139. [PMID: 35897714 PMCID: PMC9331716 DOI: 10.3390/ijms23158139] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
The study of transporters is highly challenging, as they cannot be isolated or studied in suspension, requiring a cellular or vesicular system, and, when mediated by more than one carrier, difficult to interpret. Nucleoside analogues are important drug candidates, and all protozoan pathogens express multiple equilibrative nucleoside transporter (ENT) genes. We have therefore developed a system for the routine expression of nucleoside transporters, using CRISPR/cas9 to delete both copies of all three nucleoside transporters from Leishmania mexicana (ΔNT1.1/1.2/2 (SUPKO)). SUPKO grew at the same rate as the parental strain and displayed no apparent deficiencies, owing to the cells’ ability to synthesize pyrimidines, and the expression of the LmexNT3 purine nucleobase transporter. Nucleoside transport was barely measurable in SUPKO, but reintroduction of L. mexicana NT1.1, NT1.2, and NT2 restored uptake. Thus, SUPKO provides an ideal null background for the expression and characterization of single ENT transporter genes in isolation. Similarly, an LmexNT3-KO strain provides a null background for transport of purine nucleobases and was used for the functional characterization of T. cruzi NB2, which was determined to be adenine-specific. A 5-fluorouracil-resistant strain (Lmex5FURes) displayed null transport for uracil and 5FU, and was used to express the Aspergillus nidulans uracil transporter FurD.
Collapse
|