1
|
Deepika, Madhu, Shekhawat J, Dixit S, Upadhyay SK. Pre-mRNA processing factor 4 kinases (PRP4Ks): Exploration of molecular features, interaction network and expression profiling in bread wheat. JOURNAL OF PLANT GROWTH REGULATION 2024. [DOI: 10.1007/s00344-024-11489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024]
|
2
|
Kumar S, Yadav V, Sharma N, Sethi A. HypoxamiR-210-3p regulates mesenchymal stem cells proliferation via P53 & Akt. Mol Cell Biochem 2024; 479:2119-2129. [PMID: 37620743 DOI: 10.1007/s11010-023-04834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Transplanted stem cells (˃95%) into ischemic myocardium die because of unfavourable conditions. Moreover, hypoxia role in the cell cycle regulation has been studied in transformed/immortalized cell lines which may have altered cell cycle regulators and/or mutated and, can't be transplanted in patients. We quest to find out the mechanism of cell cycle regulation in mesenchymal stem cells (MSC) to regulate its survival and proliferation in repair processes. Additionally, critically analysed role of hypoxamiR-210-3p, and cell cycle regulators that can regulate cell proliferation under hypoxic conditions. Bone marrow-derived MSC (BM-MSC) isolated from young male Fischer-344 rats by flushing the cavity of femur and propagated in vitro under 1% hypoxia for 72 h showed an increased in cell proliferation ( > 30%, p < 0.05) compared to normoxia. miR-210-3p, role in cell proliferation under hypoxic condition was confirmed by knockdown. Loss of function studies with transfection of anti-mir-210-3p, we observed decrease in proliferation of BM-MSC under hypoxia. Furthermore, BM-MSC proliferation due to miR-210-3p was confirmed using CFSE assay and flow cytometry, in which more cells were observed in S-phase. Mechanistically, western blot analysis showed miR-210-3p inhibition upregulates p53 and p21 expression and subsequent decrease in pAkt under hypoxia. On contrary, CFSE and Western blot under normoxic conditions showed downregulation of p53 and p21 whilst upregulation of pAkt indicated the key role of miR-210-3p in BM-MSC proliferation. Our results demonstrate the role of miR-210-3p in BM-MSC proliferation under both hypoxic and normoxic conditions and illustrate the potential mechanism via the regulation of pAkt, p53 and p21.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Biochemistry, Medical College, All India Institute of Medical Sciences, Bathinda, India.
- Division of Regenerative Medicine, Department of Pathology and Laboratory Medicine, Center of Excellence (CoE) Cardiovascular Diseases, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45229, USA.
- Department of Biochemistry, Medical College, All India Institute of Medical Sciences, Bathinda, Punjab, 151001, India.
| | - Varsha Yadav
- Department of Biochemistry, Medical College, All India Institute of Medical Sciences, Bathinda, India
| | - Namrta Sharma
- Department of Biochemistry, Medical College, All India Institute of Medical Sciences, Bathinda, India
| | - Anshika Sethi
- Department of Biochemistry, Medical College, All India Institute of Medical Sciences, Bathinda, India
| |
Collapse
|
3
|
Brockmueller A, Sajeev A, Koklesova L, Samuel SM, Kubatka P, Büsselberg D, Kunnumakkara AB, Shakibaei M. Resveratrol as sensitizer in colorectal cancer plasticity. Cancer Metastasis Rev 2024; 43:55-85. [PMID: 37507626 PMCID: PMC11016130 DOI: 10.1007/s10555-023-10126-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths worldwide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance (MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple pathways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing treatments.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany.
| |
Collapse
|
4
|
Chang Y, Yang Y, Li C, Chan M, Lu M, Chen M, Chen C, Hsiao M. RAB31 drives extracellular vesicle fusion and cancer-associated fibroblast formation leading to oxaliplatin resistance in colorectal cancer. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e141. [PMID: 38939899 PMCID: PMC11080812 DOI: 10.1002/jex2.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 06/29/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is associated with tumorigenesis and drug resistance. The Rab superfamily of small G-proteins plays a role in regulating cell cytoskeleton and vesicle transport. However, it is not yet clear how the Rab family contributes to cancer progression by participating in EMT. By analysing various in silico datasets, we identified a statistically significant increase in RAB31 expression in the oxaliplatin-resistant group compared to that in the parental or other chemotherapy drug groups. Our findings highlight RAB31's powerful effect on colorectal cancer cell lines when compared with other family members. In a study that analysed multiple online meta-databases, RAB31 RNA levels were continually detected in colorectal tissue arrays. Additionally, RAB31 protein levels were correlated with various clinical parameters in clinical databases and were associated with negative prognoses for patients. RAB31 expression levels in all three probes were calculated using a computer algorithm and were found to be positively correlated with EMT scores. The expression of the epithelial-type marker CDH1 was suppressed in RAB31 overexpression models, whereas the expression of the mesenchymal-type markers SNAI1 and SNAI2 increased. Notably, RAB31-induced EMT and drug resistance are dependent on extracellular vesicle (EV) secretion. Interactome analysis confirmed that RAB31/AGR2 axis-mediated exocytosis was responsible for maintaining colorectal cell resistance to oxaliplatin. Our study concluded that RAB31 alters the sensitivity of oxaliplatin, a supplementary chemotherapy approach, and is an independent prognostic factor that can be used in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yu‐Chan Chang
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yi‐Fang Yang
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
| | | | - Ming‐Hsien Chan
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Meng‐Lun Lu
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Ming‐Huang Chen
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Center of Immuno‐Oncology, Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Chi‐Long Chen
- Department of PathologyTaipei Medical University Hospital, Taipei Medical UniversityTaipeiTaiwan
- Department of Pathology, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | | |
Collapse
|
5
|
Afsar S, Syed RU, Bin Break MK, Alsukaybi RH, Alanzi RA, Alshobrmi AM, Alshagdali NM, Alshammari AD, Alharbi FM, Alshammari AM, Algharbi WF, Albrykan KM, Alshammari FN. The dual role of MiR-210 in the aetiology of cancer: A focus on hypoxia-inducible factor signalling. Pathol Res Pract 2024; 253:155018. [PMID: 38070222 DOI: 10.1016/j.prp.2023.155018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
Tumorigenesis exemplifies the complex process of neoplasm origination, which is characterised by somatic genetic alterations and abnormal cellular growth. This multidimensional phenomenon transforms previously dormant cells into malignant equivalents, resulting in uncontrollable proliferation and clonal expansion. Various elements, including random mutations, harmful environmental substances, and genetic predispositions, influence tumorigenesis's aetiology. MicroRNAs (miRNAs) are now recognised as crucial determinants of gene expression and key players in several biological methods, including oncogenesis. A well-known hypoxia-inducible miRNA is MiR-210, which is of particular interest because of its complicated role in the aetiology of cancer and a variation of physiological and pathological situations. MiR-210 significantly impacts cancer by controlling the hypoxia-inducible factor (HIF) signalling pathway. By supporting angiogenesis, metabolic reprogramming, and cellular survival in hypoxic microenvironments, HIF signalling orchestrates adaptive responses, accelerating the unstoppable development of tumorous growth. Targeting several components of this cascade, including HIF-1, HIF-3, and FIH-1, MiR-210 plays a vital role in modifying HIF signalling and carefully controlling the HIF-mediated response and cellular fates in hypoxic environments. To understand the complexities of this relationship, careful investigation is required at the intersection of MiR-210 and HIF signalling. Understanding this relationship is crucial for uncovering the mechanisms underlying cancer aetiology and developing cutting-edge therapeutic approaches. The current review emphasises MiR-210's significance as a vital regulator of the HIF signalling cascade, with substantial implications spanning a range of tumor pathogenesis.
Collapse
Affiliation(s)
- S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | | | - Reem A Alanzi
- College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhang J, Li C, Sun L, Sun D, Zhao T. P53‑microRNA interactions regulate the response of colorectal tumor cells to oxaliplatin under normoxic and hypoxic conditions. Oncol Rep 2023; 50:219. [PMID: 37921068 PMCID: PMC10636723 DOI: 10.3892/or.2023.8656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2023] Open
Abstract
Oxaliplatin (OXA)‑containing regimens are used as first‑line chemotherapy in colorectal cancer (CRC). However, OXA resistance remains a major challenge in CRC treatment. CRC cells that adapt to hypoxia can potentially develop OXA resistance, and the underlying molecular mechanisms still need to be further investigated. In the current study, the OXA drug sensitivity of two CRC cell lines, HCT116 (TP53WT) and HT29 (TP53MT), was compared under both normoxic and hypoxic conditions. It was found that under normoxic condition, HCT116 cells showed significantly higher OXA sensitivity than HT29 cells. However, both cell lines showed remarkable OXA resistance under hypoxic conditions. It was also revealed that P53 levels were increased after OXA and hypoxia treatment in HCT116 cells but not in HT29 cells. Notably, knocking down P53WT decreased normoxic but increased hypoxic OXA sensitivity in HCT116 cells, which did not exist in HT29 cells. Molecular analysis indicated that P53WT activated microRNA (miR)‑26a and miR‑34a in OXA treatment and activated miR‑23a in hypoxia treatment. Cell proliferation experiments indicated that a high level of miR‑23a decreased OXA sensitivity and that a high level of miR‑26a or miR‑34a increased OXA sensitivity in HCT116 cells. Additionally, it was demonstrated that miR‑26a, miR‑34a and miR‑23a affect cell apoptosis through regulation of MCL‑1, EZH2, BCL‑2, SMAD 4 and STAT3. Taken together, the present findings revealed the dual function of P53 in regulating cellular chemo‑sensitivity and highlighted the role of P53‑miR interactions in the response of CRC cells to OXA chemotherapy under normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Jiayu Zhang
- Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Chenguang Li
- Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Luanbiao Sun
- Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Denghua Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Tiancheng Zhao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
7
|
Shakhpazyan N, Mikhaleva L, Bedzhanyan A, Gioeva Z, Sadykhov N, Mikhalev A, Atiakshin D, Buchwalow I, Tiemann M, Orekhov A. Cellular and Molecular Mechanisms of the Tumor Stroma in Colorectal Cancer: Insights into Disease Progression and Therapeutic Targets. Biomedicines 2023; 11:2361. [PMID: 37760801 PMCID: PMC10525158 DOI: 10.3390/biomedicines11092361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide and is the third most common type of cancer. The early detection and diagnosis of CRC is critical to improve patient outcomes. This review explores the intricate interplay between the tumor microenvironment, stromal interactions, and the progression and metastasis of colorectal cancer. The review begins by assessing the gut microbiome's influence on CRC development, emphasizing its association with gut-associated lymphoid tissue (GALT). The role of the Wnt signaling pathway in CRC tumor stroma is scrutinized, elucidating its impact on disease progression. Tumor budding, its effect on tumor stroma, and the implications for patient prognosis are investigated. The review also identifies conserved oncogenic signatures (COS) within CRC stroma and explores their potential as therapeutic targets. Lastly, the seed and soil hypothesis is employed to contextualize metastasis, accentuating the significance of both tumor cells and the surrounding stroma in metastatic propensity. This review highlights the intricate interdependence between CRC cells and their microenvironment, providing valuable insights into prospective therapeutic approaches targeting tumor-stroma interactions.
Collapse
Affiliation(s)
- Nikolay Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Liudmila Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Arkady Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Zarina Gioeva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Nikolay Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Alexander Mikhalev
- Department of Hospital Surgery No. 2, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Institute for Hematopathology, 22547 Hamburg, Germany;
| | | | - Alexander Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
8
|
Jing H, Wu X, Xiang M, Wang C, Novakovic VA, Shi J. Microparticle Phosphatidylserine Mediates Coagulation: Involvement in Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:cancers15071957. [PMID: 37046617 PMCID: PMC10093313 DOI: 10.3390/cancers15071957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor progression and cancer metastasis has been linked to the release of microparticles (MPs), which are shed upon cell activation or apoptosis and display parental cell antigens, phospholipids such as phosphatidylserine (PS), and nucleic acids on their external surfaces. In this review, we highlight the biogenesis of MPs as well as the pathophysiological processes of PS externalization and its involvement in coagulation activation. We review the available evidence, suggesting that coagulation factors (mainly tissue factor, thrombin, and fibrin) assist in multiple steps of tumor dissemination, including epithelial-mesenchymal transition, extracellular matrix remodeling, immune escape, and tumor angiogenesis to support the formation of the pre-metastatic niche. Platelets are not just bystander cells in circulation but are functional players in primary tumor growth and metastasis. Tumor-induced platelet aggregation protects circulating tumor cells (CTCs) from the blood flow shear forces and immune cell attack while also promoting the binding of CTCs to endothelial cells and extravasation, which activates tumor invasion and sustains metastasis. Finally, in terms of therapy, lactadherin can inhibit coagulation by competing effectively with coagulation factors for PS binding sites and may similarly delay tumor progression. Furthermore, we also investigate the therapeutic potential of coagulation factor inhibitors within the context of cancer treatment. The development of multiple therapies targeting platelet activation and platelet-tumor cell interactions may not only reduce the lethal consequences of thrombosis but also impede tumor growth and spread.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Chengyue Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02132, USA
| |
Collapse
|
9
|
Chen S, Lin J, Zhao J, Lin Q, Liu J, Wang Q, Mui R, Ma L. FBXW7 attenuates tumor drug resistance and enhances the efficacy of immunotherapy. Front Oncol 2023; 13:1147239. [PMID: 36998461 PMCID: PMC10043335 DOI: 10.3389/fonc.2023.1147239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
FBXW7 (F-box and WD repeat domain containing 7) is a critical subunit of the Skp1-Cullin1-F-box protein (SCF), acting as an E3 ubiquitin ligase by ubiquitinating targeted protein. Through degradation of its substrates, FBXW7 plays a pivotal role in drug resistance in tumor cells and shows the potential to rescue the sensitivity of cancer cells to drug treatment. This explains why patients with higher FBXW7 levels exhibit higher survival times and more favorable prognosis. Furthermore, FBXW7 has been demonstrated to enhance the efficacy of immunotherapy by targeting the degradation of specific proteins, as compared to the inactivated form of FBXW7. Additionally, other F-box proteins have also shown the ability to conquer drug resistance in certain cancers. Overall, this review aims to explore the function of FBXW7 and its specific effects on drug resistance in cancer cells.
Collapse
Affiliation(s)
- Shimin Chen
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jichun Lin
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiaojiao Zhao
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Lin
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qiang Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Ryan Mui
- Department of Gastroenterology, Sparrow Hospital, Lansing, MI, United States
| | - Leina Ma
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Leina Ma,
| |
Collapse
|
10
|
Lee YC, Lin CH, Chang WL, Lin WD, Pan JK, Wang WJ, Su BC, Chung HH, Tsai CH, Lin FC, Wang WC, Lu PJ. Concurrent Chemoradiotherapy-Driven Cell Plasticity by miR-200 Family Implicates the Therapeutic Response of Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:4367. [PMID: 35457185 PMCID: PMC9030842 DOI: 10.3390/ijms23084367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common and fatal malignancy with an increasing incidence worldwide. Over the past decade, concurrent chemoradiotherapy (CCRT) with or without surgery is an emerging therapeutic approach for locally advanced ESCC. Unfortunately, many patients exhibit poor response or develop acquired resistance to CCRT. Once resistance occurs, the overall survival rate drops down rapidly and without proper further treatment options, poses a critical clinical challenge for ESCC therapy. Here, we utilized lab-created CCRT-resistant cells as a preclinical study model to investigate the association of chemoradioresistantresistance with miRNA-mediated cell plasticity alteration, and to determine whether reversing EMT status can re-sensitize refractory cancer cells to CCRT response. During the CCRT treatment course, refractory cancer cells adopted the conversion of epithelial to mesenchymal phenotype; additionally, miR-200 family members were found significantly down-regulated in CCRT resistance cells by miRNA microarray screening. Down-regulated miR-200 family in CCRT resistance cells suppressed E-cadherin expression through snail and slug, and accompany with an increase in N-cadherin. Rescuing expressions of miR-200 family members in CCRT resistance cells, particularly in miR-200b and miR-200c, could convert cells to epithelial phenotype by increasing E-cadherin expression and sensitize cells to CCRT treatment. Conversely, the suppression of miR-200b and miR-200c in ESCC cells attenuated E-cadherin, and that converted cells to mesenchymal type by elevating N-cadherin expression, and impaired cell sensitivity to CCRT treatment. Moreover, the results of ESCC specimens staining established the clinical relevance that higher N-cadherin expression levels associate with the poor CCRT response outcome in ESCC patients. Conclusively, miR-200b and miR-200c can modulate the conversion of epithelial-mesenchymal phenotype in ESCC, and thereby altering the response of cells to CCRT treatment. Targeting epithelial-mesenchymal conversion in acquired CCRT resistance may be a potential therapeutic option for ESCC patients.
Collapse
Affiliation(s)
- Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Cheng-Han Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| | - Wei-Lun Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Wen-Der Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
| | - Jhih-Kai Pan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
| | - Wei-Jan Wang
- Department of Biological Science and Technology, Research Center for Cancer Biology, China Medical University, Taichung 404, Taiwan;
| | - Bor-Chyuan Su
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Hsien-Hui Chung
- Preventive Medicine Program, Center for General Education, Chung Yuan Christian University, Taoyuan City 320, Taiwan;
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan
| | - Chen-Hsun Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
| | - Forn-Chia Lin
- Department of Radiation Oncology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan;
| | - Wen-Ching Wang
- Department of Surgery, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang Dist., Tainan 710, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
- Department of Clinical Medicine Research, National Cheng Kung University Hospital, Tainan 704, Taiwan
| |
Collapse
|