1
|
Peng X, Tan X, Dai L, Xia W, Wu Z. Exploring the Impact of Apelin and Reactive Oxygen Species on Autophagy and Cell Senescence in Pre-eclampsia. Free Radic Res 2024:1-32. [PMID: 39714262 DOI: 10.1080/10715762.2024.2446337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
This research investigates the interplay between Reactive Oxygen Species (ROS) and Apelin (APLN) in regulating autophagy, with implications for placental cell senescence and apoptosis in pre-eclampsia (PE). We manipulated APLN expression using sgRNA to study its effects on ROS levels and subsequent cellular responses. Our findings reveal that APLN overexpression elevates ROS production, accelerating cellular senescence and apoptosis. In contrast, silencing APLN enhances autophagy, thereby diminishing cellular aging and apoptosis. These outcomes were confirmed in vitro and in vivo experiments, establishing a causative relationship between ROS-mediated APLN modulation and altered placental cell dynamics in PE. The results suggest potential therapeutic targets within the ROS and APLN pathways to alleviate detrimental changes in the placenta, offering new strategies for the clinical management of PE. This study emphasizes the crucial role of autophagy in placental health and sets the stage for future investigations into therapeutic interventions for pregnancy-related complications.
Collapse
Affiliation(s)
- Xue Peng
- Department of Obstetrics and Gynecology, West China Second University Hospital,Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Xi Tan
- Department of Obstetrics and Gynecology, West China Second University Hospital,Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Li Dai
- Department of Obstetrics and Gynecology, West China Second University Hospital,Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Wei Xia
- Department of Obstetrics and Gynecology, West China Second University Hospital,Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Zhao Wu
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
2
|
Deigin V, Linkova N, Vinogradova J, Vinogradov D, Polyakova V, Medvedev D, Krasichkov A, Volpina O. The First Reciprocal Activities of Chiral Peptide Pharmaceuticals: Thymogen and Thymodepressin, as Examples. Int J Mol Sci 2024; 25:5042. [PMID: 38732260 PMCID: PMC11084461 DOI: 10.3390/ijms25095042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Peptides show high promise in the targeting and intracellular delivery of next-generation biotherapeutics. The main limitation is peptides' susceptibility to proteolysis in biological systems. Numerous strategies have been developed to overcome this challenge by chemically enhancing the resistance to proteolysis. In nature, amino acids, except glycine, are found in L- and D-enantiomers. The change from one form to the other will change the primary structure of polypeptides and proteins and may affect their function and biological activity. Given the inherent chiral nature of biological systems and their high enantiomeric selectivity, there is rising interest in manipulating the chirality of polypeptides to enhance their biomolecular interactions. In this review, we discuss the first examples of up-and-down homeostasis regulation by two enantiomeric drugs: immunostimulant Thymogen (L-Glu-L-Trp) and immunosuppressor Thymodepressin (D-Glu(D-Trp)). This study shows the perspective of exploring chirality to remove the chiral wall between L- and D-biomolecules. The selected clinical result will be discussed.
Collapse
Affiliation(s)
- Vladislav Deigin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia; (V.D.); (O.V.)
| | - Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, St. Petersburg 191036, Russia;
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia
| | - Julia Vinogradova
- The Department of Hospital Therapy No. 2, I.M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., Building 2, Moscow 119991, Russia; (J.V.); (D.V.)
| | - Dmitrii Vinogradov
- The Department of Hospital Therapy No. 2, I.M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., Building 2, Moscow 119991, Russia; (J.V.); (D.V.)
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, St. Petersburg 191036, Russia;
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia
| | - Dmitrii Medvedev
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia
- The Department of Social Rehabilitation and Occupational Therapy of the St. Petersburg Medical and Social Institute, Kondratievsky St., 72A, St. Petersburg 195271, Russia
| | - Alexander Krasichkov
- Department of Radio Engineering Systems, Saint Petersburg Electrotechnical University ‘LETI’, St. Petersburg 197376, Russia
| | - Olga Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia; (V.D.); (O.V.)
| |
Collapse
|
3
|
Wang L, Gao J, Liu B, Fu Y, Yao Z, Guo S, Song Z, Zhang Z, He J, Wang C, Ma W, Wu F. The association between lymphocyte-to-monocyte ratio and all-cause mortality in obese hypertensive patients with diabetes and without diabetes: results from the cohort study of NHANES 2001-2018. Front Endocrinol (Lausanne) 2024; 15:1387272. [PMID: 38686205 PMCID: PMC11056572 DOI: 10.3389/fendo.2024.1387272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Objective Obesity, hypertension and diabetes are high prevalent that are often associated with poor outcomes. They have become major global health concern. Little research has been done on the impact of lymphocyte-to-monocyte ratio (LMR) on outcomes in these patients. Thus, we aimed to explore the association between LMR and all-cause mortality in obese hypertensive patients with diabetes and without diabetes. Methods The researchers analyzed data from the National Health and Nutrition Examination Survey (2001-2018), which included 4,706 participants. Kaplan-Meier analysis was employed to compare survival rate between different groups. Multivariate Cox proportional hazards regression models with trend tests and restricted cubic splines (RCS) analysis and were used to investigate the relationship between the LMR and all-cause mortality. Subgroup analysis was performed to assess whether there was an interaction between the variables. Results The study included a total of 4706 participants with obese hypertension (48.78% male), of whom 960 cases (20.40%) died during follow-up (median follow-up of 90 months). Kaplan-Meier curves suggested a remarkable decrease in all-cause mortality with increasing LMR value in patients with diabetes and non-diabetes (P for log-rank test < 0.001). Moreover, multivariable Cox models demonstrated that the risk of mortality was considerably higher in the lowest quartile of the LMR and no linear trend was observed (P > 0.05). Furthermore, the RCS analysis indicated a non-linear decline in the risk of death as LMR values increased (P for nonlinearity < 0.001). Conclusions Increased LMR is independently related with reduced all-cause mortality in patients with obese hypertension, regardless of whether they have combined diabetes.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Jie Gao
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Bing Liu
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Youliang Fu
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Zhihui Yao
- Department of Cardiology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shanshan Guo
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Ziwei Song
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Zhaoyuan Zhang
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Jiaojiao He
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Congxia Wang
- Department of Cardiology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Weidong Ma
- Department of Cardiology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Feng Wu
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Chulanova AA, Smakhtin MY, Bobyntsev II, Mishina ES, Artyushkova EB, Smakhtina AM. Reparative and Antioxidant Effects of New Analogues of Immunomodulator Thymogen in Experimental Model of Liver Damage. Bull Exp Biol Med 2023; 175:700-703. [PMID: 37861903 DOI: 10.1007/s10517-023-05929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 10/21/2023]
Abstract
We studied the reparative and antioxidant effects of Thymogen and its new structural analogues obtained by binding amino acid D-Ala to the N- or C-end of the peptide molecule in acute toxic hepatopathy. Intragastric administration of carbon tetrachloride for 5 days caused the development of fat degeneration of hepatocytes, a decrease in catalase activity, and an increase in malondialdehyde concentration. Administration of peptides suppressed oxidative peroxidation and stimulated reparative regeneration of hepatocytes; Thymogen analogues produced more pronounced hepatotropic and antioxidant effects than Thymogen. Inclusion of D-Ala enhanced the effect of Thymogen on the processes of regeneration in hepatocytes and the antioxidant effect under conditions of acute carbon tetrachloride hepatopathy. The highest efficiency was achieved when the amino acid was added to the C-end of the molecule.
Collapse
Affiliation(s)
- A A Chulanova
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - M Yu Smakhtin
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia.
| | - I I Bobyntsev
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - E S Mishina
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - E B Artyushkova
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| | - A M Smakhtina
- Kursk State Medical University, Ministry of Health of the Russian Federation, Kursk, Russia
| |
Collapse
|
5
|
Deigin V, Linkova N, Volpina O. Advancement from Small Peptide Pharmaceuticals to Orally Active Piperazine-2,5-dion-Based Cyclopeptides. Int J Mol Sci 2023; 24:13534. [PMID: 37686336 PMCID: PMC10487935 DOI: 10.3390/ijms241713534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The oral delivery of peptide pharmaceuticals has long been a fundamental challenge in drug development. A new chemical platform was designed based on branched piperazine-2,5-diones for creating orally available biologically active peptidomimetics. The platform includes a bio-carrier with "built-in" functionally active peptide fragments or bioactive molecules that are covalently attached via linkers. The developed platform allows for a small peptide to be taken with a particular biological activity and to be transformed into an orally stable compound displaying the same activity. Based on this approach, various peptidomimetics exhibiting hemostimulating, hemosuppressing, and adjuvant activity were prepared. In addition, new examples of a rare phenomenon when enantiomeric molecules demonstrate reciprocal biological activity are presented. Finally, the review summarizes the evolutionary approach of the short peptide pharmaceutical development from the immunocompetent organ separation to orally active cyclopeptides and peptidomimetics.
Collapse
Affiliation(s)
- Vladislav Deigin
- The Laboratory of Synthetic Vaccines of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia;
| | - Natalia Linkova
- The Research Laboratory of the Development of Drug Delivery Systems, St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, St. Petersburg 191036, Russia;
| | - Olga Volpina
- The Laboratory of Synthetic Vaccines of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia;
| |
Collapse
|
6
|
Cacciatore I, Spalletta S, Di Rienzo A, Flati V, Fornasari E, Pierdomenico L, Del Boccio P, Valentinuzzi S, Costantini E, Toniato E, Martinotti S, Conte C, Di Stefano A, Robuffo I. Anti-Obesity and Anti-Inflammatory Effects of Novel Carvacrol Derivatives on 3T3-L1 and WJ-MSCs Cells. Pharmaceuticals (Basel) 2023; 16:ph16030340. [PMID: 36986440 PMCID: PMC10055808 DOI: 10.3390/ph16030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: Obesity, a complex metabolic disease resulting from an imbalance between food consumption and energy expenditure, leads to an increase in adipocytes and chronic inflammatory conditions. The aim of this paper was to synthesize a small series of carvacrol derivatives (CD1-3) that are able to reduce both adipogenesis and the inflammatory status often associated with the progression of the obesity disease. (2) Methods: The synthesis of CD1-3 was performed using classical procedures in a solution phase. Biological studies were performed on three cell lines: 3T3-L1, WJ-MSCs, and THP-1. The anti-adipogenic properties of CD1-3 were evaluated using western blotting and densitometric analysis by assessing the expression of obesity-related proteins, such as ChREBP. The anti-inflammatory effect was estimated by measuring the reduction in TNF-α expression in CD1-3-treated THP-1 cells. (3) Results: CD1-3—obtained through a direct linkage between the carboxylic moiety of anti-inflammatory drugs (Ibuprofen, Flurbiprofen, and Naproxen) and the hydroxyl group of carvacrol—have an inhibitory effect on the accumulation of lipids in both 3T3-L1 and WJ-MSCs cell cultures and an anti-inflammatory effect by reducing TNF- α levels in THP-1 cells. (4) Conclusions: Considering the physicochemical properties, stability, and biological data, the CD3 derivative—obtained by a direct linkage between carvacrol and naproxen—resulted in the best candidate, displaying anti-obesity and anti-inflammatory effects in vitro.
Collapse
Affiliation(s)
- Ivana Cacciatore
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: ; Tel.: +39-871-355-44-75
| | - Sonia Spalletta
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Annalisa Di Rienzo
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Erika Fornasari
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura Pierdomenico
- Department of Medicine and Aging Sciences, Center on Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Erica Costantini
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Elena Toniato
- Department of Innovative Technology in Medicine and Odontoiatrics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Martinotti
- Department of Innovative Technology in Medicine and Odontoiatrics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Iole Robuffo
- Department of Medicine and Aging Sciences, Center on Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Institute of Molecular Genetics “Luigi Luca Cavalli Sforza”, National Research Council, Section of Chieti, 66100 Chieti, Italy
| |
Collapse
|
7
|
Serrano-Quintero A, Sequeda-Juárez A, Pérez-Hernández CA, Sosa-Delgado SM, Mendez-Tenorio A, Ramón-Gallegos E. Immunogenic analysis of epitope-based vaccine candidate induced by photodynamic therapy in MDA-MB-231 triple-negative breast cancer cells. Photodiagnosis Photodyn Ther 2022; 40:103174. [PMID: 36602069 DOI: 10.1016/j.pdpdt.2022.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is used to treat tumors through selective cytotoxic effects. PDT induces damage-associated molecular patterns (DAMPs) expression, which can cause an immunogenic death cell (IDC). In this study we identified potential immunogenic epitopes generated by PDT on triple-negative breast cancer cell line (MDA-MB-231). METHODS MDA-MB-231 cells were exposed to PDT using ALA (160 µg/mL)/630 nm at 8 J/cm2. Membrane proteins were extracted and separated by 2D PAGE. Proteins overexpressed were identified by LC-MS/MS and analyzed in silico through a peptide-HLA docking in order to identify the epitopes with more immunogenicity and antigenicity properties, as well as lower allergenicity and toxicity activity. The selected peptides were evaluated in response to macrophage activation and cytokine release by flow cytometry. RESULTS Differential proteins were overexpressed in the cells treated with PDT. A group of 16 peptides were identified from them, established in a rigorous selection by measuring antigenicity, immunogenicity, allergenicity, and toxicity in silico. The final selection was based on molecular dynamics, where 2 peptides showed the highest stability regarding to the RMSD value. These peptides were obtained from the proteins calreticulin and HSP90. The cytokine analysis evidenced macrophage activation by the releasing of TNF. CONCLUSION Two peptides were identified from calreticulin and HSP90; proteins induced by PDT in MDA-MB-231 cells. Both epitopes showed immunogenic potential as a peptide-based vaccine for triple-negative breast cancer.
Collapse
Affiliation(s)
- Alina Serrano-Quintero
- Laboratorio de Citopatología Ambiental, ENCB, Instituto Politécnico Nacional (IPN), Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda. Manuel Stampa, Col. Zacatenco. Alcaldia Gustavo A. Madero, Mexico City C.P. 07738, Mexico
| | - Alfonso Sequeda-Juárez
- Laboratorio de Citopatología Ambiental, ENCB, Instituto Politécnico Nacional (IPN), Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda. Manuel Stampa, Col. Zacatenco. Alcaldia Gustavo A. Madero, Mexico City C.P. 07738, Mexico
| | - C Angélica Pérez-Hernández
- Laboratorio de Citopatología Ambiental, ENCB, Instituto Politécnico Nacional (IPN), Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda. Manuel Stampa, Col. Zacatenco. Alcaldia Gustavo A. Madero, Mexico City C.P. 07738, Mexico
| | - Sara M Sosa-Delgado
- Laboratorio de Citopatología Ambiental, ENCB, Instituto Politécnico Nacional (IPN), Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda. Manuel Stampa, Col. Zacatenco. Alcaldia Gustavo A. Madero, Mexico City C.P. 07738, Mexico
| | - Alfonso Mendez-Tenorio
- Laboratorio de Bioinformática y Biotecnología Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Eva Ramón-Gallegos
- Laboratorio de Citopatología Ambiental, ENCB, Instituto Politécnico Nacional (IPN), Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda. Manuel Stampa, Col. Zacatenco. Alcaldia Gustavo A. Madero, Mexico City C.P. 07738, Mexico.
| |
Collapse
|