1
|
Jin K, Lan H, Han Y, Qian J. Exosomes in cancer diagnosis based on the Latest Evidence: Where are We? Int Immunopharmacol 2024; 142:113133. [PMID: 39278058 DOI: 10.1016/j.intimp.2024.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/09/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Exosomes are small extracellular vesicles (EVs) derived from various cellular sources and have emerged as favorable biomarkers for cancer diagnosis and prognosis. These vesicles contain a variety of molecular components, including nucleic acids, proteins, and lipids, which can provide valuable information for cancer detection, classification, and monitoring. However, the clinical application of exosomes faces significant challenges, primarily related to the standardization and scalability of their use. In order to overcome these challenges, sophisticated methods such as liquid biopsy and imaging are being combined to augment the diagnostic capabilities of exosomes. Additionally, a deeper understanding of the interaction between exosomes and immune system components within the tumor microenvironment (TME) is essential. This review discusses the biogenesis and composition of exosomes, addresses the current challenges in their clinical translation, and highlights recent technological advancements and integrative approaches that support the role of exosomes in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China.
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China; Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Yuejun Han
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
2
|
Beylerli O, Shi H, Begliarzade S, Shumadalova A, Ilyasova T, Sufianov A. MiRNAs as new potential biomarkers and therapeutic targets in brain metastasis. Noncoding RNA Res 2024; 9:678-686. [PMID: 38577014 PMCID: PMC10987301 DOI: 10.1016/j.ncrna.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Brain metastases represent a formidable challenge in cancer management, impacting a significant number of patients and contributing significantly to cancer-related mortality. Conventional diagnostic methods frequently fall short, underscoring the imperative for non-invasive alternatives. Non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), present promising avenues for exploration. These ncRNAs exert influence over the prognosis and treatment resistance of brain metastases, offering valuable insights into underlying mechanisms and potential therapeutic targets. Dysregulated ncRNAs have been identified in brain metastases originating from various primary cancers, unveiling opportunities for intervention and prevention. The analysis of ncRNA expression in bodily fluids, such as serum and cerebrospinal fluid, provides a noninvasive means to differentiate brain metastases from primary tumors. NcRNAs, particularly miRNAs, assume a pivotal role in orchestrating the immune response within the brain microenvironment. MiRNAs exhibit promise in diagnosing brain metastases, effectively distinguishing between normal and cancer cells, and pinpointing the tissue of origin for metastatic brain tumors. The manipulation of miRNAs holds substantial potential in cancer treatment, offering the prospect of reducing toxicity and enhancing efficacy. Given the limited treatment options and the formidable threat of brain metastases in cancer patients, non-coding RNAs, especially miRNAs, emerge as beacons of hope, serving as both diagnostic tools and therapeutic targets. Further clinical studies are imperative to validate the specificity and sensitivity of ncRNAs, potentially reshaping approaches to tackle this challenge and elevate treatment outcomes for affected patients.
Collapse
Affiliation(s)
- Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, 150001, China
| | - Sema Begliarzade
- Department of Oncology, Radiology and Radiotherapy, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119992, Russia
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia
| |
Collapse
|
3
|
Che J, Sun Y, Deng Y, Zhang J. Blood-brain barrier disruption: a culprit of cognitive decline? Fluids Barriers CNS 2024; 21:63. [PMID: 39113115 PMCID: PMC11305076 DOI: 10.1186/s12987-024-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Cognitive decline covers a broad spectrum of disorders, not only resulting from brain diseases but also from systemic diseases, which seriously influence the quality of life and life expectancy of patients. As a highly selective anatomical and functional interface between the brain and systemic circulation, the blood-brain barrier (BBB) plays a pivotal role in maintaining brain homeostasis and normal function. The pathogenesis underlying cognitive decline may vary, nevertheless, accumulating evidences support the role of BBB disruption as the most prevalent contributing factor. This may mainly be attributed to inflammation, metabolic dysfunction, cell senescence, oxidative/nitrosative stress and excitotoxicity. However, direct evidence showing that BBB disruption causes cognitive decline is scarce, and interestingly, manipulation of the BBB opening alone may exert beneficial or detrimental neurological effects. A broad overview of the present literature shows a close relationship between BBB disruption and cognitive decline, the risk factors of BBB disruption, as well as the cellular and molecular mechanisms underlying BBB disruption. Additionally, we discussed the possible causes leading to cognitive decline by BBB disruption and potential therapeutic strategies to prevent BBB disruption or enhance BBB repair. This review aims to foster more investigations on early diagnosis, effective therapeutics, and rapid restoration against BBB disruption, which would yield better cognitive outcomes in patients with dysregulated BBB function, although their causative relationship has not yet been completely established.
Collapse
Affiliation(s)
- Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
4
|
Linares-Rodríguez M, Blancas I, Rodríguez-Serrano F. The Predictive Value of Blood-Derived Exosomal miRNAs as Biomarkers in Breast Cancer: A Systematic Review. Clin Breast Cancer 2024:S1526-8209(24)00181-2. [PMID: 39054208 DOI: 10.1016/j.clbc.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024]
Abstract
Breast cancer (BC) remains a widespread disease worldwide, despite advances in its detection and treatment. microRNAs (miRNAs) play a significant role in cancer, and their presence within exosomes may confer several advantages in terms of tumor initiation, propagation, immune evasion, and drug resistance compared to freely circulating miRNAs in the blood. The objective of this study was to conduct a systematic review to analyze the role of exosomal miRNAs present in serum or plasma as biomarkers in BC. Bibliographic sources were collected from various databases with no starting date limit until March 2023. The search terms used were related to "breast cancer," "microRNAs," and "exosomes." Following the search, inclusion and exclusion criteria were applied, resulting in a total of 46 articles. Data were extracted from the selected studies and summarized to indicate the miRNAs, type of dysregulation, sample source, number of patients and controls, and clinical relevance of the miRNAs. We carried out an enrichment study of the microRNAs that appeared in at least 3 studies, those that were suitable for selection were miR-16, miR-21 and miR-155. Exosomal miRNAs isolated from blood samples of patients diagnosed with BC could be valuable in the clinical setting. They could provide information about early diagnosis, disease progression, recurrence, treatment response, and metastases. It is crucial to reach a consensus on the specific exosomal miRNAs to detect and the most appropriate type of sample for comprehensive utilization of miRNAs as biomarkers for BC.
Collapse
Affiliation(s)
- Marina Linares-Rodríguez
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
| | - Isabel Blancas
- Department of Medicine, School of Medicine, University of Granada, Granada, Spain; Department of Medical Oncology, San Cecilio University Hospital, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| | - Fernando Rodríguez-Serrano
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Department of Human Anatomy and Embryology, University of Granada, Granada, Spain.
| |
Collapse
|
5
|
Dai Z, Lin L, Xu Y, Hu L, Gou S, Xu X. Extracellular vesicle dynamics in COPD: understanding the role of miR-422a, SPP1 and IL-17 A in smoking-related pathology. BMC Pulm Med 2024; 24:173. [PMID: 38609925 PMCID: PMC11010439 DOI: 10.1186/s12890-024-02978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) induced by smoking poses a significant global health challenge. Recent findings highlight the crucial role of extracellular vesicles (EVs) in mediating miRNA regulatory networks across various diseases. This study utilizes the GEO database to uncover distinct expression patterns of miRNAs and mRNAs, offering a comprehensive understanding of the pathogenesis of smoking-induced COPD. This study aims to investigate the mechanisms by which extracellular vesicles (EVs) mediate the molecular network of miR-422a-SPP1 to delay the onset of COPD caused by smoking. METHODS The smoking-related miRNA chip GSE38974-GPL7723 was obtained from the GEO database, and candidate miRs were retrieved from the Vesiclepedia database. Downstream target genes of the candidate miRs were predicted using mRNA chip GSE38974-GPL4133, TargetScan, miRWalk, and RNA22 databases. This prediction was integrated with COPD-related genes from the GeneCards database, downstream target genes predicted by online databases, and key genes identified in the core module of WGCNA analysis to obtain candidate genes. The candidate genes were subjected to KEGG functional enrichment analysis using the "clusterProfiler" package in R language, and a protein interaction network was constructed. In vitro experiments involved overexpressing miRNA or extracting extracellular vesicles from bronchial epithelial cell-derived exosomes, co-culturing them with myofibroblasts to observe changes in the expression levels of the miR-422a-SPP1-IL-17 A regulatory network, and assessing protein levels of fibroblast differentiation-related factors α-SMA and collagen I using Western blot analysis. RESULTS The differential gene analysis of chip GSE38974-GPL7723 and the retrieval results from the Vesiclepedia database identified candidate miRs, specifically miR-422a. Subsequently, an intersection was taken among the prediction results from TargetScan, miRWalk, and RNA22 databases, the COPD-related gene retrieval results from GeneCards database, the WGCNA analysis results of chip GSE38974-GPL4133, and the differential gene analysis results. This intersection, combined with KEGG functional enrichment analysis, and protein-protein interaction analysis, led to the final screening of the target gene SPP1 and its upstream regulatory gene miR-422a. KEGG functional enrichment analysis of mRNAs correlated with SPP1 revealed the IL-17 signaling pathway involved. In vitro experiments demonstrated that miR-422a inhibition targets suppressed the expression of SPP1 in myofibroblasts, inhibiting differentiation phenotype. Bronchial epithelial cells, under cigarette smoke extract (CSE) stress, could compensate for myofibroblast differentiation phenotype by altering the content of miR-422a in their Extracellular Vesicles (EVs). CONCLUSION The differential gene analysis of Chip GSE38974-GPL7723 and the retrieval results from the Vesiclepedia database identified candidate miRs, specifically miR-422a. Further analysis involved the intersection of predictions from TargetScan, miRWalk, and RNA22 databases, gene search on COPD-related genes from the GeneCards database, WGCNA analysis from Chip GSE38974-GPL4133, and differential gene analysis, combined with KEGG functional enrichment analysis and protein interaction analysis. Ultimately, the target gene SPP1 and its upstream regulatory gene miR-422a were selected. KEGG functional enrichment analysis on mRNAs correlated with SPP1 revealed the involvement of the IL-17 signaling pathway. In vitro experiments showed that miR-422a targeted inhibition suppressed the expression of SPP1 in myofibroblast cells, inhibiting differentiation phenotype. Furthermore, bronchial epithelial cells could compensate for myofibroblast differentiation phenotype under cigarette smoke extract (CSE) stress by altering the miR-422a content in their extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Zhihui Dai
- Department of Respiratory and Critical Care Medicine, Yongkang First People's Hospital, Hangzhou Medical College, No. 599 Jinshan West Road, 321300, Yongkang, Zhejiang Province, P. R. China
| | - Li Lin
- Department of Respiratory and Critical Care Medicine, Yongkang First People's Hospital, Hangzhou Medical College, No. 599 Jinshan West Road, 321300, Yongkang, Zhejiang Province, P. R. China
| | - Yanan Xu
- Department of Respiratory and Critical Care Medicine, Yongkang First People's Hospital, Hangzhou Medical College, No. 599 Jinshan West Road, 321300, Yongkang, Zhejiang Province, P. R. China
| | - Lifang Hu
- Department of Respiratory and Critical Care Medicine, Yongkang First People's Hospital, Hangzhou Medical College, No. 599 Jinshan West Road, 321300, Yongkang, Zhejiang Province, P. R. China
| | - Shiping Gou
- Department of Respiratory and Critical Care Medicine, Yongkang First People's Hospital, Hangzhou Medical College, No. 599 Jinshan West Road, 321300, Yongkang, Zhejiang Province, P. R. China
| | - Xinkai Xu
- Department of Respiratory and Critical Care Medicine, Yongkang First People's Hospital, Hangzhou Medical College, No. 599 Jinshan West Road, 321300, Yongkang, Zhejiang Province, P. R. China.
| |
Collapse
|
6
|
Hashimoto K, Ochiya T, Shimomura A. Liquid biopsy using non-coding RNAs and extracellular vesicles for breast cancer management. Breast Cancer 2024:10.1007/s12282-024-01562-w. [PMID: 38512533 DOI: 10.1007/s12282-024-01562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/24/2024] [Indexed: 03/23/2024]
Abstract
This article examines liquid biopsy using non-coding RNAs and extracellular vesicles in detail. Liquid biopsy is emerging as a prominent non-invasive diagnostic tool in the treatment of breast cancer. We will elucidate the roles of these molecules in early detection, monitoring treatment effectiveness, and prognostic assessment of breast cancer. Additionally, the clinical significance of these molecules will be discussed. We aim to delve into the distinct characteristics of these molecules and their possible roles in breast cancer management, with an anticipation of their contribution to future diagnostic and therapeutic advancements.
Collapse
Affiliation(s)
- Kazuki Hashimoto
- Department of Breast Surgical Oncology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-Ku, Tokyo, 162-8655, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-Ku, Tokyo, 162-8655, Japan.
| |
Collapse
|
7
|
Hashemi A, Ezati M, Nasr MP, Zumberg I, Provaznik V. Extracellular Vesicles and Hydrogels: An Innovative Approach to Tissue Regeneration. ACS OMEGA 2024; 9:6184-6218. [PMID: 38371801 PMCID: PMC10870307 DOI: 10.1021/acsomega.3c08280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
Extracellular vesicles have emerged as promising tools in regenerative medicine due to their inherent ability to facilitate intercellular communication and modulate cellular functions. These nanosized vesicles transport bioactive molecules, such as proteins, lipids, and nucleic acids, which can affect the behavior of recipient cells and promote tissue regeneration. However, the therapeutic application of these vesicles is frequently constrained by their rapid clearance from the body and inability to maintain a sustained presence at the injury site. In order to overcome these obstacles, hydrogels have been used as extracellular vesicle delivery vehicles, providing a localized and controlled release system that improves their therapeutic efficacy. This Review will examine the role of extracellular vesicle-loaded hydrogels in tissue regeneration, discussing potential applications, current challenges, and future directions. We will investigate the origins, composition, and characterization techniques of extracellular vesicles, focusing on recent advances in exosome profiling and the role of machine learning in this field. In addition, we will investigate the properties of hydrogels that make them ideal extracellular vesicle carriers. Recent studies utilizing this combination for tissue regeneration will be highlighted, providing a comprehensive overview of the current research landscape and potential future directions.
Collapse
Affiliation(s)
- Amir Hashemi
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Masoumeh Ezati
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Minoo Partovi Nasr
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Inna Zumberg
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Valentine Provaznik
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| |
Collapse
|
8
|
Yadav R, Singh AV, Kushwaha S, Chauhan DS. Emerging role of exosomes as a liquid biopsy tool for diagnosis, prognosis & monitoring treatment response of communicable & non-communicable diseases. Indian J Med Res 2024; 159:163-180. [PMID: 38577857 PMCID: PMC11050750 DOI: 10.4103/ijmr.ijmr_2344_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 04/06/2024] Open
Abstract
ABSTRACT From an initial thought of being used as a cellular garbage bin to a promising target for liquid biopsies, the role of exosomes has drastically evolved in just a few years of their discovery in 1983. Exosomes are naturally secreted nano-sized vesicles, abundant in all types of body fluids and can be isolated intact even from the stored biological samples. Being stable carriers of genetic material (cellular DNA, mRNA and miRNA) and having specific cargo (signature content of originating cells), exosomes play a crucial role in pathogenesis and have been identified as a novel source of biomarkers in a variety of disease conditions. Recently exosomes have emerged as a promising 'liquid biopsy tool'and have shown great potential in the field of non-invasive disease diagnostics, prognostics and treatment response monitoring in both communicable as well as non-communicable diseases. However, there are certain limitations to overcome which restrict the use of exosome-based liquid biopsy as a gold standard testing procedure in routine clinical practices. The present review summarizes the current knowledge on the role of exosomes as the liquid biopsy tool in diagnosis, prognosis and treatment response monitoring in communicable and non-communicable diseases and highlights the major limitations, technical advancements and future prospects of the utilization of exosome-based liquid biopsy in clinical interventions.
Collapse
Affiliation(s)
- Rajbala Yadav
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Ajay Vir Singh
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Shweta Kushwaha
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Devendra Singh Chauhan
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| |
Collapse
|
9
|
Teles RHG, Engelmayr D, Meybohm P, Burek M. Isolation of Extracellular Vesicles Using Formulas to Adapt Centrifugation to Different Centrifuges. Methods Mol Biol 2024; 2761:39-48. [PMID: 38427227 DOI: 10.1007/978-1-0716-3662-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer vesicles released by cells to facilitate cell-to-cell communication. To study their biological roles and functions, they need to be isolated and purified, which can be achieved through a variety of methods. Here, we describe different methods for isolating and purifying EVs, with a focus on calculating the required g-force and centrifugation time with different centrifuges and rotors. We have compiled key formulas and tested predicted parameters for EV acquisitions to provide a comprehensive guide for EV isolation.
Collapse
Affiliation(s)
- Ramon Handerson Gomes Teles
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
- Laboratory of Tumor Microenvironment, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo, Sao Paulo, Brazil
- Graduate School of Life Sciences, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Daniela Engelmayr
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Life Sciences, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
10
|
Sakamoto Y, Ochiya T, Yoshioka Y. Extracellular vesicles in the breast cancer brain metastasis: physiological functions and clinical applications. Front Hum Neurosci 2023; 17:1278501. [PMID: 38111675 PMCID: PMC10725966 DOI: 10.3389/fnhum.2023.1278501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
Breast cancer, which exhibits an increasing incidence and high mortality rate among cancers, is predominantly attributed to metastatic malignancies. Brain metastasis, in particular, significantly contributes to the elevated mortality in breast cancer patients. Extracellular vesicles (EVs) are small lipid bilayer vesicles secreted by various cells that contain biomolecules such as nucleic acids and proteins. They deliver these bioactive molecules to recipient cells, thereby regulating signal transduction and protein expression levels. The relationship between breast cancer metastasis and EVs has been extensively investigated. In this review, we focus on the molecular mechanisms by which EVs promote brain metastasis in breast cancer. Additionally, we discuss the potential of EV-associated molecules as therapeutic targets and their relevance as early diagnostic markers for breast cancer brain metastasis.
Collapse
Affiliation(s)
| | | | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
11
|
Li J, He D, Bi Y, Liu S. The Emerging Roles of Exosomal miRNAs in Breast Cancer Progression and Potential Clinical Applications. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:825-840. [PMID: 38020052 PMCID: PMC10658810 DOI: 10.2147/bctt.s432750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
Breast cancer remains the leading malignancy in terms of morbidity and mortality today. The tumor microenvironment of breast cancer includes multiple cell types, secreted proteins, and signaling components such as exosomes. Among these, exosomes have a lipid bilayer structure. Exosomes can reflect the biological traits of the parent cell and carry a variety of biologically active components, including proteins, lipids, small molecules, and non-coding RNAs, which include miRNA, lncRNA, and circRNA. MiRNAs are a group of non-coding RNAs of approximately 20-23 nucleotides in length encoded by the genome, triggering silencing and functional repression of target genes. MiRNAs have been shown to play a significant role in the development of cancer owing to their role in the prognosis, pathogenesis, diagnosis, and treatment of cancer. MiRNAs in exosomes can serve as effective mediators of information transfer from parental cells to recipient cells and trigger changes in biological traits such as proliferation, invasion, migration, and drug resistance. These changes can profoundly alter the progression of breast cancer. Therefore, here, we systematically summarize the association of exosomal miRNAs on breast cancer progression, diagnosis, and treatment in the hope of providing novel strategies and directions for subsequent breast cancer treatment.
Collapse
Affiliation(s)
- Jie Li
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, People’s Republic of China
| | - Dejiao He
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Yajun Bi
- Department of Pediatrics, Dalian Municipal Women and Children’s Medical Center (Group), Dalian Medical University, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Shengxuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People’s Republic of China
| |
Collapse
|
12
|
Zayakin P, Sadovska L, Eglītis K, Romanchikova N, Radoviča-Spalviņa I, Endzeliņš E, Liepniece-Karele I, Eglītis J, Linē A. Extracellular Vesicles-A Source of RNA Biomarkers for the Detection of Breast Cancer in Liquid Biopsies. Cancers (Basel) 2023; 15:4329. [PMID: 37686605 PMCID: PMC10487078 DOI: 10.3390/cancers15174329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Over the past decade, extracellular vesicles (EVs) have emerged as a promising source of cancer-derived RNAs for liquid biopsies. However, blood contains a pool of heterogeneous EVs released by a variety of cell types, making the identification of cancer RNA biomarkers challenging. Here, we performed deep sequencing of plasma EV RNA cargo in 32 patients with locally advanced breast cancer (BC) at diagnosis and 7 days after breast surgery and in 30 cancer-free healthy controls (HCs). To identify BC-derived RNA biomarkers, we searched for RNAs that had higher levels in BC EVs at the time of diagnosis compared with HCs and decreased after surgery. Data analysis showed that the fractions of miRNAs, snRNAs, snoRNAs, and tRFs were increased, but the fraction of lncRNAs was decreased in BC EVs as compared to HCs. BC-derived biomarker candidates were identified across various RNA biotypes. Considered individually, they had very high specificity but moderate sensitivity for the detection of BC, whereas a biomarker model composed of eight RNAs: SNORD3H, SNORD1C, SNORA74D, miR-224-5p, piR-32949, lnc-IFT-122-2, lnc-C9orf50-4, and lnc-FAM122C-3 was able to distinguish BC from HC EVs with an AUC of 0.902 (95% CI = 0.872-0.931, p = 3.4 × 10-9) in leave-one-out cross-validation. Furthermore, a number of RNA biomarkers were correlated with the ER and HER2 expression and additional biomarker models were created to predict hormone receptor and HER2 status. Overall, this study demonstrated that the RNA composition of plasma EVs is altered in BC patients and that they contain cancer-derived RNA biomarkers that can be used for BC detection and monitoring using liquid biopsies.
Collapse
Affiliation(s)
- Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia; (P.Z.); (L.S.); (N.R.); (E.E.)
| | - Lilite Sadovska
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia; (P.Z.); (L.S.); (N.R.); (E.E.)
| | - Kristaps Eglītis
- Latvian Oncology Center, Riga Eastern Clinical University Hospital, LV-1038 Riga, Latvia; (K.E.)
| | - Nadezhda Romanchikova
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia; (P.Z.); (L.S.); (N.R.); (E.E.)
| | | | - Edgars Endzeliņš
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia; (P.Z.); (L.S.); (N.R.); (E.E.)
| | | | - Jānis Eglītis
- Latvian Oncology Center, Riga Eastern Clinical University Hospital, LV-1038 Riga, Latvia; (K.E.)
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia; (P.Z.); (L.S.); (N.R.); (E.E.)
| |
Collapse
|
13
|
Murillo Carrasco AG, Otake AH, Macedo-da-Silva J, Feijoli Santiago V, Palmisano G, Andrade LNDS, Chammas R. Deciphering the Functional Status of Breast Cancers through the Analysis of Their Extracellular Vesicles. Int J Mol Sci 2023; 24:13022. [PMID: 37629204 PMCID: PMC10455604 DOI: 10.3390/ijms241613022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC) accounts for the highest incidence of tumor-related mortality among women worldwide, justifying the growing search for molecular tools for the early diagnosis and follow-up of BC patients under treatment. Circulating extracellular vesicles (EVs) are membranous nanocompartments produced by all human cells, including tumor cells. Since minimally invasive methods collect EVs, which represent reservoirs of signals for cell communication, these particles have attracted the interest of many researchers aiming to improve BC screening and treatment. Here, we analyzed the cargoes of BC-derived EVs, both proteins and nucleic acids, which yielded a comprehensive list of potential markers divided into four distinct categories, namely, (i) modulation of aggressiveness and growth; (ii) preparation of the pre-metastatic niche; (iii) epithelial-to-mesenchymal transition; and (iv) drug resistance phenotype, further classified according to their specificity and sensitivity as vesicular BC biomarkers. We discuss the therapeutic potential of and barriers to the clinical implementation of EV-based tests, including the heterogeneity of EVs and the available technologies for analyzing their content, to present a consistent, reproducible, and affordable set of markers for further evaluation.
Collapse
Affiliation(s)
- Alexis Germán Murillo Carrasco
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Andreia Hanada Otake
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Janaina Macedo-da-Silva
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
| | - Veronica Feijoli Santiago
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Luciana Nogueira de Sousa Andrade
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| |
Collapse
|
14
|
González-Martínez C, Garrido-Navas C, Alcaide-Lucena M, Hidalgo JL, Ortega FG, Serrano MJ. microRNAs signature in relapse metastasis and de novo metastasis of breast cancer. A systematic review. Crit Rev Oncol Hematol 2023:104060. [PMID: 37353177 DOI: 10.1016/j.critrevonc.2023.104060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023] Open
Abstract
miRNAs have been widely identified as important players in cancer development and progression. Metastasis in breast cancer can occur as relapse of a treated primary tumour or at the time of diagnosis of the tumour. The aim of this review is to show if both metastasis are different molecular entities characterised by different miRNA signatures that could be studied as specific biomarkers for each entity. For this, we systematically searched the PubMed, Scopus and Web of Science databases. After searching and reviewing the literature, a total of 30 records were included in this review. Results showed a genetic signature including a total of 5 upregulated miRNAs in metastasis compared with early stages. Of them, miR-23b and miR-200c were exclusively present in relapse metastasis. Finally, we proposed a molecular signature for future studies that can be used as a complementary tool at clinical trials for the diagnosis and characterization of metastasis.
Collapse
Affiliation(s)
- Coral González-Martínez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain; Department of Legal Medicine, University of Granada, Av. de la Investigación, 11, 18071 Granada, Spain
| | - Carmen Garrido-Navas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain
| | - Miriam Alcaide-Lucena
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; General Surgery and Digestive System Unit, Hospital Clínico San Cecilio, 18016 Granada, Spain
| | - J López Hidalgo
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain; Pathological Anatomy Unit, Hospital Clínico San Cecilio, 18016 Granada, Spain
| | - Francisco Gabriel Ortega
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain.
| | - María José Serrano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain; Integral Oncology Division, Hospital Virgen de las Nieves, 18014 Granada, Spain.
| |
Collapse
|
15
|
Aseervatham J. Dynamic Role of Exosome microRNAs in Cancer Cell Signaling and Their Emerging Role as Noninvasive Biomarkers. BIOLOGY 2023; 12:biology12050710. [PMID: 37237523 DOI: 10.3390/biology12050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Exosomes are extracellular vesicles that originate from endosomes and are released by all cells irrespective of their origin or type. They play an important role in cell communication and can act in an autocrine, endocrine, or paracrine fashion. They are 40-150 nm in diameter and have a similar composition to the cell of origin. An exosome released by a particular cell is unique since it carries information about the state of the cell in pathological conditions such as cancer. miRNAs carried by cancer-derived exosomes play a multifaceted role by taking part in cell proliferation, invasion, metastasis, epithelial-mesenchymal transition, angiogenesis, apoptosis, and immune evasion. Depending on the type of miRNA that it carries as its cargo, it can render cells chemo- or radiosensitive or resistant and can also act as a tumor suppressor. Since the composition of exosomes is affected by the cellular state, stress, and changes in the environment, they can be used as diagnostic or prognostic biomarkers. Their unique ability to cross biological barriers makes them an excellent choice as vehicles for drug delivery. Because of their easy availability and stability, they can be used to replace cancer biopsies, which are invasive and expensive. Exosomes can also be used to follow the progression of diseases and monitor treatment strategies. A better understanding of the roles and functions of exosomal miRNA can be used to develop noninvasive, innovative, and novel treatments for cancer.
Collapse
Affiliation(s)
- Jaya Aseervatham
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
16
|
Mardi N, Salahpour-Anarjan F, Nemati M, Shahsavari Baher N, Rahbarghazi R, Zarebkohan A. Exosomes; multifaceted nanoplatform for targeting brain cancers. Cancer Lett 2023; 557:216077. [PMID: 36731592 DOI: 10.1016/j.canlet.2023.216077] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
At the moment, anaplastic changes within the brain are challenging due to the complexity of neural tissue, leading to the inefficiency of therapeutic protocols. The existence of a cellular interface, namely the blood-brain barrier (BBB), restricts the entry of several macromolecules and therapeutic agents into the brain. To date, several nano-based platforms have been used in laboratory settings and in vivo conditions to overcome the barrier properties of BBB. Exosomes (Exos) are one-of-a-kind of extracellular vesicles with specific cargo to modulate cell bioactivities in a paracrine manner. Regarding unique physicochemical properties and easy access to various biofluids, Exos provide a favorable platform for drug delivery and therapeutic purposes. Emerging data have indicated that Exos enable brain penetration of selective cargos such as bioactive factors and chemotherapeutic compounds. Along with these statements, the application of smart delivery approaches can increase delivery efficiency and thus therapeutic outcomes. Here, we highlighted the recent advances in the application of Exos in the context of brain tumors.
Collapse
Affiliation(s)
- Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Salahpour-Anarjan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Nemati
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Shahsavari Baher
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Eraky AM. Advances in Brain Metastases Diagnosis: Non-coding RNAs As Potential Biomarkers. Cureus 2023; 15:e36337. [PMID: 37077610 PMCID: PMC10109215 DOI: 10.7759/cureus.36337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
Brain metastasis is considered the most common brain tumor. They arise from different primary cancers. The most common primary tumors giving brain metastases include breast, colorectal, lung, melanoma, and renal cancer. Depending only on history, physical examination, and conventional imaging modalities makes brain tumors diagnosis difficult. Rapid and non-invasive promising modalities could diagnose and differentiate between different brain metastases without exposing the patients to unnecessary brain surgeries for biopsies. One of these promising modalities is non-coding RNAs (ncRNAs). NcRNAs can determine brain metastases' prognosis, chemoresistance, and radioresistance. It also helps us to understand the pathophysiology of brain metastases development. Additionally, ncRNAs may work as potential therapeutic targets for brain metastases treatment and prevention. Herein, we present deregulated ncRNAs in different brain metastases, including microRNAs and long non-coding RNAs (lncRNAs), such as gastric adenocarcinoma, colorectal, breast, melanoma, lung, and prostate cancer. Additionally, we focus on serum and cerebrospinal fluid (CSF) expression of these ncRNAs in patients with brain metastases compared to patients with primary tumors. Moreover, we discuss the role of ncRNAs in modulating the immune response in the brain microenvironment. More clinical studies are encouraged to assess the specificity and sensitivity of these ncRNAs.
Collapse
Affiliation(s)
- Akram M Eraky
- Neurosurgery, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
18
|
Philip AK, Samuel BA, Bhatia S, Khalifa SAM, El-Seedi HR. Artificial Intelligence and Precision Medicine: A New Frontier for the Treatment of Brain Tumors. Life (Basel) 2022; 13:24. [PMID: 36675973 PMCID: PMC9866715 DOI: 10.3390/life13010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Brain tumors are a widespread and serious neurological phenomenon that can be life- threatening. The computing field has allowed for the development of artificial intelligence (AI), which can mimic the neural network of the human brain. One use of this technology has been to help researchers capture hidden, high-dimensional images of brain tumors. These images can provide new insights into the nature of brain tumors and help to improve treatment options. AI and precision medicine (PM) are converging to revolutionize healthcare. AI has the potential to improve cancer imaging interpretation in several ways, including more accurate tumor genotyping, more precise delineation of tumor volume, and better prediction of clinical outcomes. AI-assisted brain surgery can be an effective and safe option for treating brain tumors. This review discusses various AI and PM techniques that can be used in brain tumor treatment. These new techniques for the treatment of brain tumors, i.e., genomic profiling, microRNA panels, quantitative imaging, and radiomics, hold great promise for the future. However, there are challenges that must be overcome for these technologies to reach their full potential and improve healthcare.
Collapse
Affiliation(s)
- Anil K. Philip
- School of Pharmacy, University of Nizwa, Birkat Al Mouz, Nizwa 616, Oman
| | - Betty Annie Samuel
- School of Pharmacy, University of Nizwa, Birkat Al Mouz, Nizwa 616, Oman
| | - Saurabh Bhatia
- Natural and Medical Science Research Center, University of Nizwa, Birkat Al Mouz, Nizwa 616, Oman
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, SE-751 24 Uppsala, Sweden
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing 210024, China
| |
Collapse
|
19
|
Molecular Docking and Intracellular Translocation of Extracellular Vesicles for Efficient Drug Delivery. Int J Mol Sci 2022; 23:ijms232112971. [PMID: 36361760 PMCID: PMC9659046 DOI: 10.3390/ijms232112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by delivering their contents, such as nucleic acids, proteins, and lipids, to distant target cells. EVs play a role in the progression of several diseases. In particular, programmed death-ligand 1 (PD-L1) levels in exosomes are associated with cancer progression. Furthermore, exosomes are being used for new drug-delivery systems by modifying their membrane peptides to promote their intracellular transduction via micropinocytosis. In this review, we aim to show that an efficient drug-delivery system and a useful therapeutic strategy can be established by controlling the molecular docking and intracellular translocation of exosomes. We summarise the mechanisms of molecular docking of exosomes, the biological effects of exosomes transmitted into target cells, and the current state of exosomes as drug delivery systems.
Collapse
|
20
|
Curtaz CJ, Kiesel L, Meybohm P, Wöckel A, Burek M. Anti-Hormonal Therapy in Breast Cancer and Its Effect on the Blood-Brain Barrier. Cancers (Basel) 2022; 14:cancers14205132. [PMID: 36291916 PMCID: PMC9599962 DOI: 10.3390/cancers14205132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
The molecular receptor status of breast cancer has implications for prognosis and long-term metastasis. Although metastatic luminal B-like, hormone-receptor-positive, HER2−negative, breast cancer causes brain metastases less frequently than other subtypes, though tumor metastases in the brain are increasingly being detected of this patient group. Despite the many years of tried and tested use of a wide variety of anti-hormonal therapeutic agents, there is insufficient data on their intracerebral effectiveness and their ability to cross the blood-brain barrier. In this review, we therefore summarize the current state of knowledge on anti-hormonal therapy and its intracerebral impact and effects on the blood-brain barrier in breast cancer.
Collapse
Affiliation(s)
- Carolin J. Curtaz
- Department of Gynecology and Obstetrics, University Hospital Würzburg, 97080 Würzburg, Germany
- Correspondence:
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, University Hospital of Münster, 48143 Münster, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
21
|
Identification of Differentially Expressed microRNAs Associated with Ischemic Stroke by Integrated Bioinformatics Approaches. Int J Genomics 2022; 2022:9264555. [PMID: 36262825 PMCID: PMC9576445 DOI: 10.1155/2022/9264555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of disability and mortality worldwide. This study aims to find the crucial exosomal miRNAs associated with IS by using bioinformatics methods, reveal potential biomarkers for IS, and investigate the association between the identified biomarker and immune cell pattern in the peripheral blood of IS patients. In this study, 3 up-regulated miRNAs (hsa-miR-15b-5p, hsa-miR-184, and hsa-miR-16-5p) miRNAs in the serum exosomes between IS patients and healthy controls from GEO database (GSE199942) and 25 down-regulated genes of peripheral blood mononuclear cells of IS patients from GSE22255 were obtained with the help of the R software. GO annotation and KEGG pathway enrichment analysis showed that the 25 down-regulated genes were associated with coenzyme metabolic process and were mainly enriched in the N-glycan biosynthesis pathway. Furthermore, we performed the LASSO algorithm to narrow down the above 25 intersected genes, and identified 8 key genes which had a good diagnostic value in discriminating IS patients from the healthy controls analyzed with ROC curve. CIBERSORT algorithm indicated that the abundance of M0 macrophages and resting mast cells was significantly lower than that of the control group. The spearman correlation analysis showed that STT3A was negatively correlated with the proportion of follicular helper T cells, activated NK cells and resting dendritic cells. Finally, GSE117064 showed that has-miR-16-5p was more advantageous for diagnosing stroke. In conclusion, hsa-miR-15b-5p, hsa-miR-184, and hsa-miR-16-5p are identified as specific related exosomal miRNAs for IS patients. These genes may provide new targets for the early identification of IS.
Collapse
|
22
|
Yi X, Huang D, Li Z, Wang X, Yang T, Zhao M, Wu J, Zhong T. The role and application of small extracellular vesicles in breast cancer. Front Oncol 2022; 12:980404. [PMID: 36185265 PMCID: PMC9515427 DOI: 10.3389/fonc.2022.980404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy and the leading cause of cancer-related deaths in women worldwide. Currently, patients’ survival remains a challenge in BC due to the lack of effective targeted therapies and the difficult condition of patients with higher aggressiveness, metastasis and drug resistance. Small extracellular vesicles (sEVs), which are nanoscale vesicles with lipid bilayer envelopes released by various cell types in physiological and pathological conditions, play an important role in biological information transfer between cells. There is growing evidence that BC cell-derived sEVs may contribute to the establishment of a favorable microenvironment that supports cancer cells proliferation, invasion and metastasis. Moreover, sEVs provide a versatile platform not only for the diagnosis but also as a delivery vehicle for drugs. This review provides an overview of current new developments regarding the involvement of sEVs in BC pathogenesis, including tumor proliferation, invasion, metastasis, immune evasion, and drug resistance. In addition, sEVs act as messenger carriers carrying a variety of biomolecules such as proteins, nucleic acids, lipids and metabolites, making them as potential liquid biopsy biomarkers for BC diagnosis and prognosis. We also described the clinical applications of BC derived sEVs associated MiRs in the diagnosis and treatment of BC along with ongoing clinical trials which will assist future scientific endeavors in a more organized direction.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
23
|
Baldasici O, Pileczki V, Cruceriu D, Gavrilas LI, Tudoran O, Balacescu L, Vlase L, Balacescu O. Breast Cancer-Delivered Exosomal miRNA as Liquid Biopsy Biomarkers for Metastasis Prediction: A Focus on Translational Research with Clinical Applicability. Int J Mol Sci 2022; 23:ijms23169371. [PMID: 36012638 PMCID: PMC9408950 DOI: 10.3390/ijms23169371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Metastasis represents the most important cause of breast cancer-associated mortality. Even for early diagnosed stages, the risk of metastasis is significantly high and predicts a grim outcome for the patient. Nowadays, efforts are made for identifying blood-based biomarkers that could reliably distinguish patients with highly metastatic cancers in order to ensure a closer follow-up and a more personalized therapeutic method. Exosomes are nano vesicles secreted by cancer cells that can transport miRNAs, proteins, and other molecules and deliver them to recipient cells all over the body. Through this transfer, cancer cells modulate their microenvironment and facilitate the formation of the pre-metastatic niche, leading to sustained progression. Exosomal miRNAs have been extensively studied due to their promising potential as prognosis biomarkers for metastatic breast cancer. In this review, we tried to depict an overview of the existing literature regarding exosomal miRNAs that are already validated as potential biomarkers, and which could be immediately available for the clinic. Moreover, in the last section, we highlighted several miRNAs that have proven their function in preclinical studies and could be considered for clinical validation. Considering the lack of standard methods for evaluating exosomal miRNA, we also discussed the challenges and the technical aspects underlying this issue.
Collapse
Affiliation(s)
- Oana Baldasici
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
- Department of Pharmaceutical Technology and Biopharmaceutics, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Valentina Pileczki
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
| | - Daniel Cruceriu
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
- Department of Molecular Biology and Biotechnology, “Babes-Bolyai” University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Laura Ioana Gavrilas
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Oana Tudoran
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
| | - Loredana Balacescu
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
24
|
Meng L, Song K, Li S, Kang Y. Exosomes: Small Vesicles with Important Roles in the Development, Metastasis and Treatment of Breast Cancer. MEMBRANES 2022; 12:membranes12080775. [PMID: 36005690 PMCID: PMC9414313 DOI: 10.3390/membranes12080775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 05/12/2023]
Abstract
Breast cancer (BC) has now overtaken lung cancer as the most common cancer, while no biopredictive marker isolated from biological fluids has yet emerged clinically. After traditional chemotherapy, with the huge side effects brought by drugs, patients also suffer from the double affliction of drugs to the body while fighting cancer, and they often quickly develop drug resistance after the drug, leading to a poor prognosis. And the treatment of some breast cancer subtypes, such as triple negative breast cancer (TNBC), is even more difficult. Exosomes (Exos), which are naturally occurring extracellular vesicles (EVs) with nanoscale acellular structures ranging in diameter from 40 to 160 nm, can be isolated from various biological fluids and have been widely studied because they are derived from the cell membrane, have extremely small diameter, and are widely involved in various biological activities of the body. It can be used directly or modified to make derivatives or to make some analogs for the treatment of breast cancer. This review will focus on the involvement of exosomes in breast cancer initiation, progression, invasion as well as metastasis and the therapeutic role of exosomes in breast cancer.
Collapse
Affiliation(s)
- Ling’ao Meng
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
- Correspondence: (S.L.); (Y.K.)
| | - Yue Kang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
- Correspondence: (S.L.); (Y.K.)
| |
Collapse
|
25
|
Zhang W, Zhang S, Wang Z. Prognostic value of 12 m7G methylation-related miRNA markers and their correlation with immune infiltration in breast cancer. Front Oncol 2022; 12:929363. [PMID: 35992830 PMCID: PMC9389359 DOI: 10.3389/fonc.2022.929363] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/12/2022] [Indexed: 01/20/2023] Open
Abstract
RNA guanine-7 methyltransferase (RNMT), in complex with FAM103A1, plays an important role in tumorigenesis and development. The aim of this study was to establish a prognostic model of RNMT and FAM103A1-based upstream microRNAs and explore its correlation with immune cell infiltration in breast cancer (BC) while investigating its potential prognostic value and verify the model by quantitative real-time polymerase chain reaction (qRT-PCR). The miRNA expression data upstream of the m7G methyltransferase complex RNMT/FAM103A1 in BC was obtained from The Cancer Genome Atlas and TargetScan databases. We performed univariate Cox regression, LASSO regression, Kaplan-Meier survival, and principal component analyses, along with risk prognostic modelling. Based on multivariate Cox regression analysis, a total of 12 m7G methyltransferase-related miRNAs were found. The model showed good accuracy for predicting the 1-, 3-,5-, and 10-year survival rates, and the areas under the curve were almost >0.7. To characterize the risk-level model constructed from 12 miRNAs, 12 differentially expressed mRNAs related to prognosis and immune infiltration were obtained. The prognosis of BC patients is well predicted by the risk model we constructed. This model is also closely related to immune infiltration, and new immunotherapy targets can be explored from this field.
Collapse
|