1
|
Asadi Sarabi P, Shabanpouremam M, Eghtedari AR, Barat M, Moshiri B, Zarrabi A, Vosough M. AI-Based solutions for current challenges in regenerative medicine. Eur J Pharmacol 2024; 984:177067. [PMID: 39454850 DOI: 10.1016/j.ejphar.2024.177067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
The emergence of Artificial Intelligence (AI) and its usage in regenerative medicine represents a significant opportunity that holds the promise of tackling critical challenges and improving therapeutic outcomes. This article examines the ways in which AI, including machine learning and data fusion techniques, can contribute to regenerative medicine, particularly in gene therapy, stem cell therapy, and tissue engineering. In gene therapy, AI tools can boost the accuracy and safety of treatments by analyzing extensive genomic datasets to target and modify genetic material in a precise manner. In cell therapy, AI improves the characterization and optimization of cell products like mesenchymal stem cells (MSCs) by predicting their function and potency. Additionally, AI enhances advanced microscopy techniques, enabling accurate, non-invasive and quantitative analyses of live cell cultures. AI enhances tissue engineering by optimizing biomaterial and scaffold designs, predicting interactions with tissues, and streamlining development. This leads to faster and more cost-effective innovations by decreasing trial and error. The convergence of AI and regenerative medicine holds great transformative potential, promising effective treatments and innovative therapeutic strategies. This review highlights the importance of interdisciplinary collaboration and the continued integration of AI-based technologies, such as data fusion methods, to overcome current challenges and advance regenerative medicine.
Collapse
Affiliation(s)
- Pedram Asadi Sarabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahshid Shabanpouremam
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Amir Reza Eghtedari
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Mahsa Barat
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Behzad Moshiri
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan; Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
2
|
Liu F, Xu H, Cui P, Li S, Wang H, Wu Z. NFSA-DTI: A Novel Drug-Target Interaction Prediction Model Using Neural Fingerprint and Self-Attention Mechanism. Int J Mol Sci 2024; 25:11818. [PMID: 39519369 PMCID: PMC11546351 DOI: 10.3390/ijms252111818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Existing deep learning methods have shown outstanding performance in predicting drug-target interactions. However, they still have limitations: (1) the over-reliance on locally extracted features by some single encoders, with insufficient consideration of global features, and (2) the inadequate modeling and learning of local crucial interaction sites in drug-target interaction pairs. In this study, we propose a novel drug-target interaction prediction model called the Neural Fingerprint and Self-Attention Mechanism (NFSA-DTI), which effectively integrates the local information of drug molecules and target sequences with their respective global features. The neural fingerprint method is used in this model to extract global features of drug molecules, while the self-attention mechanism is utilized to enhance CNN's capability in capturing the long-distance dependencies between the subsequences in the target amino acid sequence. In the feature fusion module, we improve the bilinear attention network by incorporating attention pooling, which enhances the model's ability to learn local crucial interaction sites in the drug-target pair. The experimental results on three benchmark datasets demonstrated that NFSA-DTI outperformed all baseline models in predictive performance. Furthermore, case studies illustrated that our model could provide valuable insights for drug discovery. Moreover, our model offers molecular-level interpretations.
Collapse
Affiliation(s)
| | | | - Peng Cui
- School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China; (F.L.)
| | | | | | - Ziye Wu
- School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China; (F.L.)
| |
Collapse
|
3
|
Qian Y, Li X, Wu J, Zhang Q. MMCL-CPI: A multi-modal compound-protein interaction prediction model incorporating contrastive learning pre-training. Comput Biol Chem 2024; 112:108137. [PMID: 39079285 DOI: 10.1016/j.compbiolchem.2024.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 09/13/2024]
Abstract
MOTIVATION Compound-protein interaction (CPI) prediction plays a crucial role in drug discovery and drug repositioning. Early researchers relied on time-consuming and labor-intensive wet laboratory experiments. However, the advent of deep learning has significantly accelerated this progress. Most existing deep learning methods utilize deep neural networks to extract compound features from sequences and graphs, either separately or in combination. Our team's previous research has demonstrated that compound images contain valuable information that can be leveraged for CPI task. However, there is a scarcity of multimodal methods that effectively combine sequence and image representations of compounds in CPI. Currently, the use of text-image pairs for contrastive language-image pre-training is a popular approach in the multimodal field. Further research is needed to explore how the integration of sequence and image representations can enhance the accuracy of CPI task. RESULTS This paper presents a novel method called MMCL-CPI, which encompasses two key highlights: 1) Firstly, we propose extracting compound features from two modalities: one-dimensional SMILES and two-dimensional images. This approach enables us to capture both sequence and spatial features, enhancing the prediction accuracy for CPI. Based on this, we design a novel multimodal model. 2) Secondly, we introduce a multimodal pre-training strategy that leverages comparative learning on a large-scale unlabeled dataset to establish the correspondence between SMILES string and compound's image. This pre-training approach significantly improves compound feature representations for downstream CPI task. Our method has shown competitive results on multiple datasets.
Collapse
Affiliation(s)
- Ying Qian
- School of Computer Science and Technology, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, East China Normal University, Shanghai, China
| | - Xinyi Li
- School of Computer Science and Technology, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, East China Normal University, Shanghai, China
| | - Jian Wu
- School of Computer Science and Technology, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, East China Normal University, Shanghai, China
| | - Qian Zhang
- School of Computer Science and Technology, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Lavecchia A. Advancing drug discovery with deep attention neural networks. Drug Discov Today 2024; 29:104067. [PMID: 38925473 DOI: 10.1016/j.drudis.2024.104067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
In the dynamic field of drug discovery, deep attention neural networks are revolutionizing our approach to complex data. This review explores the attention mechanism and its extended architectures, including graph attention networks (GATs), transformers, bidirectional encoder representations from transformers (BERT), generative pre-trained transformers (GPTs) and bidirectional and auto-regressive transformers (BART). Delving into their core principles and multifaceted applications, we uncover their pivotal roles in catalyzing de novo drug design, predicting intricate molecular properties and deciphering elusive drug-target interactions. Despite challenges, these attention-based architectures hold unparalleled promise to drive transformative breakthroughs and accelerate progress in pharmaceutical research.
Collapse
Affiliation(s)
- Antonio Lavecchia
- Drug Discovery Laboratory, Department of Pharmacy, University of Napoli Federico II, I-80131 Naples, Italy.
| |
Collapse
|
5
|
Vo QD, Saito Y, Ida T, Nakamura K, Yuasa S. The use of artificial intelligence in induced pluripotent stem cell-based technology over 10-year period: A systematic scoping review. PLoS One 2024; 19:e0302537. [PMID: 38771829 PMCID: PMC11108174 DOI: 10.1371/journal.pone.0302537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/09/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Stem cell research, particularly in the domain of induced pluripotent stem cell (iPSC) technology, has shown significant progress. The integration of artificial intelligence (AI), especially machine learning (ML) and deep learning (DL), has played a pivotal role in refining iPSC classification, monitoring cell functionality, and conducting genetic analysis. These enhancements are broadening the applications of iPSC technology in disease modelling, drug screening, and regenerative medicine. This review aims to explore the role of AI in the advancement of iPSC research. METHODS In December 2023, data were collected from three electronic databases (PubMed, Web of Science, and Science Direct) to investigate the application of AI technology in iPSC processing. RESULTS This systematic scoping review encompassed 79 studies that met the inclusion criteria. The number of research studies in this area has increased over time, with the United States emerging as a leading contributor in this field. AI technologies have been diversely applied in iPSC technology, encompassing the classification of cell types, assessment of disease-specific phenotypes in iPSC-derived cells, and the facilitation of drug screening using iPSC. The precision of AI methodologies has improved significantly in recent years, creating a foundation for future advancements in iPSC-based technologies. CONCLUSIONS Our review offers insights into the role of AI in regenerative and personalized medicine, highlighting both challenges and opportunities. Although still in its early stages, AI technologies show significant promise in advancing our understanding of disease progression and development, paving the way for future clinical applications.
Collapse
Affiliation(s)
- Quan Duy Vo
- Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshihiro Ida
- Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazufumi Nakamura
- Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shinsuke Yuasa
- Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Huang WC, Lin WT, Hung MS, Lee JC, Tung CW. Decrypting orphan GPCR drug discovery via multitask learning. J Cheminform 2024; 16:10. [PMID: 38263092 PMCID: PMC10804799 DOI: 10.1186/s13321-024-00806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
The drug discovery of G protein-coupled receptors (GPCRs) superfamily using computational models is often limited by the availability of protein three-dimensional (3D) structures and chemicals with experimentally measured bioactivities. Orphan GPCRs without known ligands further complicate the process. To enable drug discovery for human orphan GPCRs, multitask models were proposed for predicting half maximal effective concentrations (EC50) of the pairs of chemicals and GPCRs. Protein multiple sequence alignment features, and physicochemical properties and fingerprints of chemicals were utilized to encode the protein and chemical information, respectively. The protein features enabled the transfer of data-rich GPCRs to orphan receptors and the transferability based on the similarity of protein features. The final model was trained using both agonist and antagonist data from 200 GPCRs and showed an excellent mean squared error (MSE) of 0.24 in the validation dataset. An independent test using the orphan dataset consisting of 16 receptors associated with less than 8 bioactivities showed a reasonably good MSE of 1.51 that can be further improved to 0.53 by considering the transferability based on protein features. The informative features were identified and mapped to corresponding 3D structures to gain insights into the mechanism of GPCR-ligand interactions across the GPCR family. The proposed method provides a novel perspective on learning ligand bioactivity within the diverse human GPCR superfamily and can potentially accelerate the discovery of therapeutic agents for orphan GPCRs.
Collapse
Affiliation(s)
- Wei-Cheng Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Wei-Ting Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Ming-Shiu Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Jinq-Chyi Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan.
| |
Collapse
|
7
|
Abdelkader GA, Kim JD. Advances in Protein-Ligand Binding Affinity Prediction via Deep Learning: A Comprehensive Study of Datasets, Data Preprocessing Techniques, and Model Architectures. Curr Drug Targets 2024; 25:1041-1065. [PMID: 39318214 DOI: 10.2174/0113894501330963240905083020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Drug discovery is a complex and expensive procedure involving several timely and costly phases through which new potential pharmaceutical compounds must pass to get approved. One of these critical steps is the identification and optimization of lead compounds, which has been made more accessible by the introduction of computational methods, including deep learning (DL) techniques. Diverse DL model architectures have been put forward to learn the vast landscape of interaction between proteins and ligands and predict their affinity, helping in the identification of lead compounds. OBJECTIVE This survey fills a gap in previous research by comprehensively analyzing the most commonly used datasets and discussing their quality and limitations. It also offers a comprehensive classification of the most recent DL methods in the context of protein-ligand binding affinity prediction (BAP), providing a fresh perspective on this evolving field. METHODS We thoroughly examine commonly used datasets for BAP and their inherent characteristics. Our exploration extends to various preprocessing steps and DL techniques, including graph neural networks, convolutional neural networks, and transformers, which are found in the literature. We conducted extensive literature research to ensure that the most recent deep learning approaches for BAP were included by the time of writing this manuscript. RESULTS The systematic approach used for the present study highlighted inherent challenges to BAP via DL, such as data quality, model interpretability, and explainability, and proposed considerations for future research directions. We present valuable insights to accelerate the development of more effective and reliable DL models for BAP within the research community. CONCLUSION The present study can considerably enhance future research on predicting affinity between protein and ligand molecules, hence further improving the overall drug development process.
Collapse
Affiliation(s)
- Gelany Aly Abdelkader
- Department of Computer Science and Electronic Engineering, Sun Moon University, Asan 31460, Republic of Korea
| | - Jeong-Dong Kim
- Department of Computer Science and Electronic Engineering, Sun Moon University, Asan 31460, Republic of Korea
- Division of Computer Science and Engineering, Sun Moon University, Asan 31460, Republic of Korea
- Genomebased BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea
| |
Collapse
|
8
|
Chen J, Gu Z, Lai L, Pei J. In silico protein function prediction: the rise of machine learning-based approaches. MEDICAL REVIEW (2021) 2023; 3:487-510. [PMID: 38282798 PMCID: PMC10808870 DOI: 10.1515/mr-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/11/2023] [Indexed: 01/30/2024]
Abstract
Proteins function as integral actors in essential life processes, rendering the realm of protein research a fundamental domain that possesses the potential to propel advancements in pharmaceuticals and disease investigation. Within the context of protein research, an imperious demand arises to uncover protein functionalities and untangle intricate mechanistic underpinnings. Due to the exorbitant costs and limited throughput inherent in experimental investigations, computational models offer a promising alternative to accelerate protein function annotation. In recent years, protein pre-training models have exhibited noteworthy advancement across multiple prediction tasks. This advancement highlights a notable prospect for effectively tackling the intricate downstream task associated with protein function prediction. In this review, we elucidate the historical evolution and research paradigms of computational methods for predicting protein function. Subsequently, we summarize the progress in protein and molecule representation as well as feature extraction techniques. Furthermore, we assess the performance of machine learning-based algorithms across various objectives in protein function prediction, thereby offering a comprehensive perspective on the progress within this field.
Collapse
Affiliation(s)
- Jiaxiao Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhonghui Gu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, China
| |
Collapse
|
9
|
Zhang Y, Liu C, Liu M, Liu T, Lin H, Huang CB, Ning L. Attention is all you need: utilizing attention in AI-enabled drug discovery. Brief Bioinform 2023; 25:bbad467. [PMID: 38189543 PMCID: PMC10772984 DOI: 10.1093/bib/bbad467] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024] Open
Abstract
Recently, attention mechanism and derived models have gained significant traction in drug development due to their outstanding performance and interpretability in handling complex data structures. This review offers an in-depth exploration of the principles underlying attention-based models and their advantages in drug discovery. We further elaborate on their applications in various aspects of drug development, from molecular screening and target binding to property prediction and molecule generation. Finally, we discuss the current challenges faced in the application of attention mechanisms and Artificial Intelligence technologies, including data quality, model interpretability and computational resource constraints, along with future directions for research. Given the accelerating pace of technological advancement, we believe that attention-based models will have an increasingly prominent role in future drug discovery. We anticipate that these models will usher in revolutionary breakthroughs in the pharmaceutical domain, significantly accelerating the pace of drug development.
Collapse
Affiliation(s)
- Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Mujiexin Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyuan Liu
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng-Bing Huang
- School of Computer Science and Technology, Aba Teachers University, Aba, China
| | - Lin Ning
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| |
Collapse
|
10
|
Qian Y, Li X, Wu J, Zhang Q. MCL-DTI: using drug multimodal information and bi-directional cross-attention learning method for predicting drug-target interaction. BMC Bioinformatics 2023; 24:323. [PMID: 37633938 PMCID: PMC10463755 DOI: 10.1186/s12859-023-05447-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Prediction of drug-target interaction (DTI) is an essential step for drug discovery and drug reposition. Traditional methods are mostly time-consuming and labor-intensive, and deep learning-based methods address these limitations and are applied to engineering. Most of the current deep learning methods employ representation learning of unimodal information such as SMILES sequences, molecular graphs, or molecular images of drugs. In addition, most methods focus on feature extraction from drug and target alone without fusion learning from drug-target interacting parties, which may lead to insufficient feature representation. MOTIVATION In order to capture more comprehensive drug features, we utilize both molecular image and chemical features of drugs. The image of the drug mainly has the structural information and spatial features of the drug, while the chemical information includes its functions and properties, which can complement each other, making drug representation more effective and complete. Meanwhile, to enhance the interactive feature learning of drug and target, we introduce a bidirectional multi-head attention mechanism to improve the performance of DTI. RESULTS To enhance feature learning between drugs and targets, we propose a novel model based on deep learning for DTI task called MCL-DTI which uses multimodal information of drug and learn the representation of drug-target interaction for drug-target prediction. In order to further explore a more comprehensive representation of drug features, this paper first exploits two multimodal information of drugs, molecular image and chemical text, to represent the drug. We also introduce to use bi-rectional multi-head corss attention (MCA) method to learn the interrelationships between drugs and targets. Thus, we build two decoders, which include an multi-head self attention (MSA) block and an MCA block, for cross-information learning. We use a decoder for the drug and target separately to obtain the interaction feature maps. Finally, we feed these feature maps generated by decoders into a fusion block for feature extraction and output the prediction results. CONCLUSIONS MCL-DTI achieves the best results in all the three datasets: Human, C. elegans and Davis, including the balanced datasets and an unbalanced dataset. The results on the drug-drug interaction (DDI) task show that MCL-DTI has a strong generalization capability and can be easily applied to other tasks.
Collapse
Affiliation(s)
- Ying Qian
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Computer Science and Technology, East China Normal University, North Zhongshan Road, Shanghai, 200062 China
| | - Xinyi Li
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Computer Science and Technology, East China Normal University, North Zhongshan Road, Shanghai, 200062 China
| | - Jian Wu
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Computer Science and Technology, East China Normal University, North Zhongshan Road, Shanghai, 200062 China
| | - Qian Zhang
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Computer Science and Technology, East China Normal University, North Zhongshan Road, Shanghai, 200062 China
| |
Collapse
|
11
|
Molecular Property Prediction by Combining LSTM and GAT. Biomolecules 2023; 13:biom13030503. [PMID: 36979438 PMCID: PMC10046625 DOI: 10.3390/biom13030503] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Molecular property prediction is an important direction in computer-aided drug design. In this paper, to fully explore the information from SMILE stings and graph data of molecules, we combined the SALSTM and GAT methods in order to mine the feature information of molecules from sequences and graphs. The embedding atoms are obtained through SALSTM, firstly using SMILES strings, and they are combined with graph node features and fed into the GAT to extract the global molecular representation. At the same time, data augmentation is added to enlarge the training dataset and improve the performance of the model. Finally, to enhance the interpretability of the model, the attention layers of both models are fused together to highlight the key atoms. Comparison with other graph-based and sequence-based methods, for multiple datasets, shows that our method can achieve high prediction accuracy with good generalizability.
Collapse
|
12
|
Wei Z, Liu X, Yan R, Sun G, Yu W, Liu Q, Guo Q. Pixel-level multimodal fusion deep networks for predicting subcellular organelle localization from label-free live-cell imaging. Front Genet 2022; 13:1002327. [PMID: 36386823 PMCID: PMC9644055 DOI: 10.3389/fgene.2022.1002327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023] Open
Abstract
Complex intracellular organizations are commonly represented by dividing the metabolic process of cells into different organelles. Therefore, identifying sub-cellular organelle architecture is significant for understanding intracellular structural properties, specific functions, and biological processes in cells. However, the discrimination of these structures in the natural organizational environment and their functional consequences are not clear. In this article, we propose a new pixel-level multimodal fusion (PLMF) deep network which can be used to predict the location of cellular organelle using label-free cell optical microscopy images followed by deep-learning-based automated image denoising. It provides valuable insights that can be of tremendous help in improving the specificity of label-free cell optical microscopy by using the Transformer-Unet network to predict the ground truth imaging which corresponds to different sub-cellular organelle architectures. The new prediction method proposed in this article combines the advantages of a transformer's global prediction and CNN's local detail analytic ability of background features for label-free cell optical microscopy images, so as to improve the prediction accuracy. Our experimental results showed that the PLMF network can achieve over 0.91 Pearson's correlation coefficient (PCC) correlation between estimated and true fractions on lung cancer cell-imaging datasets. In addition, we applied the PLMF network method on the cell images for label-free prediction of several different subcellular components simultaneously, rather than using several fluorescent labels. These results open up a new way for the time-resolved study of subcellular components in different cells, especially for cancer cells.
Collapse
Affiliation(s)
- Zhihao Wei
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Xi Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Ruiqing Yan
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Guocheng Sun
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, China,School of Mechanical Engineering & Hydrogen Energy Research Centre, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Weiyong Yu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Qiang Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Qianjin Guo
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, China,School of Mechanical Engineering & Hydrogen Energy Research Centre, Beijing Institute of Petrochemical Technology, Beijing, China,*Correspondence: Qianjin Guo,
| |
Collapse
|
13
|
Multiple Parallel Fusion Network for Predicting Protein Subcellular Localization from Stimulated Raman Scattering (SRS) Microscopy Images in Living Cells. Int J Mol Sci 2022; 23:ijms231810827. [PMID: 36142736 PMCID: PMC9504098 DOI: 10.3390/ijms231810827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Stimulated Raman Scattering Microscopy (SRS) is a powerful tool for label-free detailed recognition and investigation of the cellular and subcellular structures of living cells. Determining subcellular protein localization from the cell level of SRS images is one of the basic goals of cell biology, which can not only provide useful clues for their functions and biological processes but also help to determine the priority and select the appropriate target for drug development. However, the bottleneck in predicting subcellular protein locations of SRS cell imaging lies in modeling complicated relationships concealed beneath the original cell imaging data owing to the spectral overlap information from different protein molecules. In this work, a multiple parallel fusion network, MPFnetwork, is proposed to study the subcellular locations from SRS images. This model used a multiple parallel fusion model to construct feature representations and combined multiple nonlinear decomposing algorithms as the automated subcellular detection method. Our experimental results showed that the MPFnetwork could achieve over 0.93 dice correlation between estimated and true fractions on SRS lung cancer cell datasets. In addition, we applied the MPFnetwork method to cell images for label-free prediction of several different subcellular components simultaneously, rather than using several fluorescent labels. These results open up a new method for the time-resolved study of subcellular components in different cells, especially cancer cells.
Collapse
|
14
|
NEXGB: A Network Embedding Framework for Anticancer Drug Combination Prediction. Int J Mol Sci 2022; 23:ijms23179838. [PMID: 36077236 PMCID: PMC9456392 DOI: 10.3390/ijms23179838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 11/27/2022] Open
Abstract
Compared to single-drug therapy, drug combinations have shown great potential in cancer treatment. Most of the current methods employ genomic data and chemical information to construct drug–cancer cell line features, but there is still a need to explore methods to combine topological information in the protein interaction network (PPI). Therefore, we propose a network-embedding-based prediction model, NEXGB, which integrates the corresponding protein modules of drug–cancer cell lines with PPI network information. NEXGB extracts the topological features of each protein node in a PPI network by struc2vec. Then, we combine the topological features with the target protein information of drug–cancer cell lines, to generate drug features and cancer cell line features, and utilize extreme gradient boosting (XGBoost) to predict the synergistic relationship between drug combinations and cancer cell lines. We apply our model on two recently developed datasets, the Oncology-Screen dataset (Oncology-Screen) and the large drug combination dataset (DrugCombDB). The experimental results show that NEXGB outperforms five current methods, and it effectively improves the predictive power in discovering relationships between drug combinations and cancer cell lines. This further demonstrates that the network information is valid for detecting combination therapies for cancer and other complex diseases.
Collapse
|
15
|
Kusumoto D, Yuasa S, Fukuda K. Induced Pluripotent Stem Cell-Based Drug Screening by Use of Artificial Intelligence. Pharmaceuticals (Basel) 2022; 15:562. [PMID: 35631387 PMCID: PMC9145330 DOI: 10.3390/ph15050562] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are terminally differentiated somatic cells that differentiate into various cell types. iPSCs are expected to be used for disease modeling and for developing novel treatments because differentiated cells from iPSCs can recapitulate the cellular pathology of patients with genetic mutations. However, a barrier to using iPSCs for comprehensive drug screening is the difficulty of evaluating their pathophysiology. Recently, the accuracy of image analysis has dramatically improved with the development of artificial intelligence (AI) technology. In the field of cell biology, it has become possible to estimate cell types and states by examining cellular morphology obtained from simple microscopic images. AI can evaluate disease-specific phenotypes of iPS-derived cells from label-free microscopic images; thus, AI can be utilized for disease-specific drug screening using iPSCs. In addition to image analysis, various AI-based methods can be applied to drug development, including phenotype prediction by analyzing genomic data and virtual screening by analyzing structural formulas and protein-protein interactions of compounds. In the future, combining AI methods may rapidly accelerate drug discovery using iPSCs. In this review, we explain the details of AI technology and the application of AI for iPSC-based drug screening.
Collapse
Affiliation(s)
- Dai Kusumoto
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Center for Preventive Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| |
Collapse
|