1
|
Zhu X, Wang L, Wang K, Yao Y, Zhou F. Erdafitinib promotes ferroptosis in human uveal melanoma by inducing ferritinophagy and lysosome biogenesis via modulating the FGFR1/mTORC1/TFEB signaling axis. Free Radic Biol Med 2024; 222:552-568. [PMID: 38971541 DOI: 10.1016/j.freeradbiomed.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Uveal melanoma (UM) is a rare yet lethal primary intraocular malignancy affecting adults. Analysis of data from The Cancer Genome Atlas (TCGA) database revealed that FGFR1 expression was increased in UM tumor tissues and was linked to aggressive behavior and a poor prognosis. This study assessed the anti-tumor effects of Erdafitinib, a selective pan-FGFR inhibitor, in both in vitro and in vivo UM models. Erdafitinib exhibited a robust anti-cancer activity in UM through inducing ferroptosis in the FGFR1-dependent manner. Transcriptomic data revealed that Erdafitinib mediated its anti-cancer effects via modulating the ferritinophagy/lysosome biogenesis. Subsequent research revealed that Erdafitinib exerted its effects by reducing the expression of FGFR1 and inhibiting the activity of mTORC1 in UM cells. Concurrently, it enhanced the dephosphorylation, nuclear translocation, and transcriptional activity of TFEB. The aggregation of TFEB in nucleus triggered FTH1-dependent ferritinophagy, leading to lysosomal activation and iron overload. Conversely, the overexpression of FGFR1 served to mitigate the effects of Erdafitinib on ferritinophagy, lysosome biogenesis, and the activation of the mTORC1/TFEB signaling pathway. In vivo experiments have convincingly shown that Erdafitinib markedly curtails tumor growth in an UM xenograft mouse model, an effect that is closely correlated with a decrease in FGFR1 expression levels. The present study is the first to demonstrate that Erdafitinib powerfully induces ferroptosis in UM by orchestrating the ferritinophagy and lysosome biogenesis via modulating the FGFR1/mTORC1/TFEB signaling. Consequently, Erdafitinib emerges as a strong candidate for clinical trial investigation, and FGFR1 emerges as a novel and promising therapeutic target in the treatment of UM.
Collapse
Affiliation(s)
- Xue Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu Province, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Ling Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu Province, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Ke Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu Province, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| | - Ying Yao
- Department of Pharmacy, Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, Jiangsu Province, China.
| | - Fanfan Zhou
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Zhang Y, Chen H, Zhang W, Zhou H. Identification of cancer-associated fibroblast-related Ectodysplasin-A as a novel indicator for prognosis and immune response in gastric cancer. Heliyon 2024; 10:e34005. [PMID: 39091933 PMCID: PMC11292546 DOI: 10.1016/j.heliyon.2024.e34005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Studies have indicated cancer-associated fibroblasts (CAFs) could have a significant impact in gastric cancer (GC) progression and chemotherapy resistance. However, the gene related to cancer fibroblasts that can be used as biomarkers to judge the occurrence of gastric cancer has not been fully explored. Based on two Gene Expression Omnibus (GEO) datasets, we focus on differentially expressed genes which may act as CAFs markers related to GC. Through COX regression, LASSO regression and Kaplan-Meier survival analysis, we discovered three upregulated genes (GLT8D2, GNAS and EDA) associated with poor GC patients' survival. By single-cell analysis and nomogram, we found that EDA may affect fibroblast production and disease prognosis in GC patients. EDA expression showed a positive correlation with 5-Fluorouracil IC50 values. Immunohistochemistry (IHC) and real time PCR indicated elevated EDA levels in GC tissues and cells. Enrichment analysis revealed that EDA was closely linked to immune system regulation. IHC and single-cell analysis indicated that EDA gene was associated with cancer fibroblasts marker FGF12 and influence cell interferon-gamma response, which may play a role in regulating immune-related characteristics. In summary, we concluded that EDA may be used as a new therapeutic CAFs marker for GC.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Haoran Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenzheng Zhang
- Department of Joint and Sports Medicine, Taian City Central Hospital, Taian, Shandong, China
| | - Haiyan Zhou
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Loda A, Semeraro F, Parolini S, Ronca R, Rezzola S. Cancer stem-like cells in uveal melanoma: novel insights and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189104. [PMID: 38701937 DOI: 10.1016/j.bbcan.2024.189104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Uveal melanoma (UM) is the most common primary ocular tumor in the adult population. Even though these primary tumors are successfully treated in 90% of cases, almost 50% of patients ultimately develop metastasis, mainly in the liver, via hematological dissemination, with a median survival spanning from 6 to 12 months after diagnosis. In this context, chemotherapy regimens and molecular targeted therapies have demonstrated poor response rates and failed to improve survival. Among the multiple reasons for therapy failure, the presence of cancer stem-like cells (CSCs) represents the main cause of resistance to anticancer therapies. In the last few years, the existence of CSCs in UM has been demonstrated both in preclinical and clinical studies, and new molecular pathways and mechanisms have been described for this subpopulation of UM cells. Here, we will discuss the state of the art of CSC biology and their potential exploitation as therapeutic target in UM.
Collapse
Affiliation(s)
- Alessandra Loda
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; National Center for Gene Therapy and Drugs based on RNA Technology - CN3, Padova, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
4
|
Krattiger LA, Moser LO, Odabasi R, Odriozola A, Simona BR, Djonov V, Tibbitt MW, Ehrbar M. Recovery of Therapeutically Ablated Engineered Blood-Vessel Networks on a Plug-and-Play Platform. Adv Healthc Mater 2024; 13:e2301142. [PMID: 37946678 DOI: 10.1002/adhm.202301142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Limiting the availability of key angiogenesis-promoting factors is a successful strategy to ablate tumor-supplying blood vessels or to reduce excessive vasculature in diabetic retinopathy. However, the efficacy of such anti-angiogenic therapies (AATs) varies with tumor type, and regrowth of vessels is observed upon termination of treatment. The ability to understand and develop AATs remains limited by a lack of robust in vitro systems for modeling the recovery of vascular networks. Here, complex 3D micro-capillary networks are engineered by sequentially seeding human bone marrow-derived mesenchymal stromal cells and human umbilical vein endothelial cells (ECs) on a previously established, synthetic plug-and-play hydrogel platform. In the tightly interconnected vascular networks that form this way, the two cell types share a basement membrane-like layer and can be maintained for several days of co-culture. Pre-formed networks degrade in the presence of bevacizumab. Upon treatment termination, vessel structures grow back to their original positions after replenishment with new ECs, which also integrate into unperturbed established networks. The data suggest that this plug-and-play platform enables the screening of drugs with blood-vessel inhibiting functions. It is believed that this platform could be of particular interest in studying resistance or recovery mechanisms to AAT treatment.
Collapse
Affiliation(s)
- Lisa A Krattiger
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich, 8091, Switzerland
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zürich, 8092, Switzerland
| | - Lukas O Moser
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich, 8091, Switzerland
| | - Rodi Odabasi
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich, 8091, Switzerland
| | - Adolfo Odriozola
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, Bern, 3012, Switzerland
| | - Benjamin R Simona
- Ectica Technologies AG, Raeffelstrasse 24, Zurich, 8045, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, Bern, 3012, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zürich, 8092, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich, 8091, Switzerland
| |
Collapse
|
5
|
Loda A, Calza S, Giacomini A, Ravelli C, Krishna Chandran AM, Tobia C, Tabellini G, Parolini S, Semeraro F, Ronca R, Rezzola S. FGF-trapping hampers cancer stem-like cells in uveal melanoma. Cancer Cell Int 2023; 23:89. [PMID: 37165394 PMCID: PMC10173517 DOI: 10.1186/s12935-023-02903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/24/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Cancer stem-like cells (CSCs) are a subpopulation of tumor cells responsible for tumor initiation, metastasis, chemoresistance, and relapse. Recently, CSCs have been identified in Uveal Melanoma (UM), which represents the most common primary tumor of the eye. UM is highly resistant to systemic chemotherapy and effective therapies aimed at improving overall survival of patients are eagerly required. METHODS Herein, taking advantage from a pan Fibroblast Growth Factor (FGF)-trap molecule, we singled out and analyzed a UM-CSC subset with marked stem-like properties. A hierarchical clustering of gene expression data publicly available on The Cancer Genome Atlas (TCGA) was performed to identify patients' clusters. RESULTS By disrupting the FGF/FGF receptor (FGFR)-mediated signaling, we unmasked an FGF-sensitive UM population characterized by increased expression of numerous stemness-related transcription factors, enhanced aldehyde dehydrogenase (ALDH) activity, and tumor-sphere formation capacity. Moreover, FGF inhibition deeply affected UM-CSC survival in vivo in a chorioallantoic membrane (CAM) tumor graft assay, resulting in the reduction of tumor growth. At clinical level, hierarchical clustering of TCGA gene expression data revealed a strong correlation between FGFs/FGFRs and stemness-related genes, allowing the identification of three distinct clusters characterized by different clinical outcomes. CONCLUSIONS Our findings support the evidence that the FGF/FGFR axis represents a master regulator of cancer stemness in primary UM tumors and point to anti-FGF treatments as a novel therapeutic strategy to hit the CSC component in UM.
Collapse
Affiliation(s)
- Alessandra Loda
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Adwaid Manu Krishna Chandran
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Chiara Tobia
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy.
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
6
|
Gong Y, Liao YH, Yi QY, Li M, Chen LS, Wang YY. Nintedanib induces apoptosis in human pterygium cells through the FGFR2-ERK signalling pathway. Int J Ophthalmol 2023; 16:505-513. [PMID: 37077497 PMCID: PMC10089899 DOI: 10.18240/ijo.2023.04.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
AIM To investigate whether nintedanib can inhibit pterygium cells through the fibroblast growth factor receptor 2 (FGFR2)/extracellular-signal-regulated kinase (ERK) pathway. METHODS Human primary pterygium cells were cultured in vitro. After treatment with nintedanib, the cell morphology was observed under microscopy, the morphological changes of the nucleus were observed after DAPI staining, apoptosis was analyzed by Annexin-V FITC/PI double staining, and the changes of apoptosis-associated proteins were detected by Western blot. The binding ability of nintedanib to FGFR2 was predicted by molecular docking. Finally, by silencing FGFR2, we explored whether nintedanib inhibited FGFR2/ERK pathway. RESULTS The results showed that nintedanib inhibited the growth of pterygium cells and caused nuclear pyknosis. The results of Annexin-VFITC/PI double staining showed that nintedanib was able to induce early and late apoptosis of pterygium cells, significantly increasing the expression of apoptosis-associated proteins Bax and cleaved-Caspase3 (P<0.05), and reducing the expression of Bcl-2 (P<0.05). In addition, nintedanib significantly inhibited ERK1/2 phosphorylation through FGFR2 (P<0.05). After silencing the expression of FGFR2, there was no significant difference in the inhibition of ERK1/2 phosphorylation by nintedanib (P>0.05). CONCLUSION Nintedanib induces apoptosis of pterygium cells by inhibiting FGFR2/ERK pathway.
Collapse
Affiliation(s)
- Yan Gong
- Ningbo Eye Hospital, Ningbo 315042, Zhejiang Province, China
| | - Yan-Hong Liao
- Ningbo Eye Hospital, Ningbo 315042, Zhejiang Province, China
| | - Quan-Yong Yi
- Ningbo Eye Hospital, Ningbo 315042, Zhejiang Province, China
| | - Meng Li
- Health Science Center, Ningbo University, Ningbo 315021, Zhejiang Province, China
| | - Li-Shuang Chen
- Ningbo Eye Hospital, Ningbo 315042, Zhejiang Province, China
| | - Yan-Yan Wang
- Ningbo Eye Hospital, Ningbo 315042, Zhejiang Province, China
| |
Collapse
|
7
|
FGF5 protects heart from sepsis injury by attenuating cardiomyocyte pyroptosis through inhibiting CaMKII/NFκB signaling. Biochem Biophys Res Commun 2022; 636:104-112. [DOI: 10.1016/j.bbrc.2022.10.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022]
|
8
|
Fibroblast Growth Factor-2 (FGF-2) Expression in Pterygia Using Cell Spot Arrays. Vision (Basel) 2022; 6:vision6040058. [PMID: 36278670 PMCID: PMC9589943 DOI: 10.3390/vision6040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Fibroblast growth factor (FGF) is a main regulator of cell differentiation, cell migration and angiogenesis in normal and abnormal conjunctiva epithelia, but specific mechanisms of its aberrant expression are yet to be investigated. In the present study, we investigated FGF-2 protein expression within several pterygia. Using a liquid-based cytology assay, we obtained cell specimens from pterygia and healthy tissues directly from patients. A combination of immunocytochemistry followed by digital image analysis showed significant overexpression of FGF-2 in all the examined pterygia. In 30/60 (50%) cases there were high levels of staining intensity, whereas in the remaining 30/60 (50%) cases there were moderate levels of expression. FGF-2 levels of the control group were significantly lower in comparison with the pterygia group. There was no significant correlation between FGF-2 levels and either sex or location of the pterygium. FGF-2 levels had a significant correlation with morphological characteristics of the pterygia. More specifically, FGF-2 levels were significantly higher in the pterygia with a fleshy morphology. Interestingly, recurrent lesions demonstrated high expression levels. An overexpression of FGF-2 has been observed frequently in pterygia, where it may play a crucial role in determining the lesion’s progression. FGF-2 upregulation correlates with the morphology of pterygia and its tendency to recur. Cell spot analysis based on liquid-based cytology is a simple, yet effective, method for detecting a broad spectrum of protein markers and could be useful in analyzing potential pterygia patient samples.
Collapse
|