1
|
Ling S, Guo Z, Wu M, Tang J, Lv H, Li J, Ma K. miR-9a and miR-10482-5p regulate the expression of chitin synthase and chitinase genes, enhancing lufenuron tolerance in Spodoptera frugiperda. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110115. [PMID: 39722315 DOI: 10.1016/j.cbpc.2024.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Spodoptera frugiperda is a significant agricultural pest, severely impacting the yield and quality of grain. Chitin is the momentous component of exoskeletons, which has a significant impact on the growth and development of insects. Our previous study found that exposure to lufenuron can reduce the expression of chitinase gene (SfCHT5) and increase the expression of chitin synthase gene (SfCHSB), two key genes for chitin synthesis in S. frugiperda. However, the post-transcriptional regulatory mechanisms of these key genes in S. frugiperda remain unclear. With miRNA as the entry point, target site prediction, dual luciferase reporter assays, and mimics/inhibitors injection were used to explore the post-transcriptional regulatory mechanism of SfCHSB and SfCHT5. The combined results confirm that miR-10482-5p targets SfCHT5 and regulates its expression, while miR-9a targets and regulates the expression of both SfCHT5 and SfCHSB. Additionally, injection of miR-10482-5p and miR-9a mimic significantly reduced the mortality rates of S. frugiperda treated with lufenuron, increased pupation rate, and emergence rate. These findings underscore the critical regulatory role of miR-10482-5p and miR-9a in modulating the expression of key genes involved in chitin synthesis, thereby enhancing the tolerance of S. frugiperda to lufenuron and influencing its growth and development. In summary, this study preliminarily elucidates the post-transcriptional regulatory mechanisms of miRNA-mediated SfCHSB and SfCHT5 expression.
Collapse
Affiliation(s)
- Shanshan Ling
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhimin Guo
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mengyan Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiahui Tang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Haixiang Lv
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
2
|
Pan-Pan Guo, Yang XB, Yang H, Zhou C, Long GY, Jin DC. Knockdown of the β-N-acetylhexosaminidase genes by RNA interference inhibited the molting and increased the mortality of the white-backed planthopper, Sogatella furcifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 207:106216. [PMID: 39672650 DOI: 10.1016/j.pestbp.2024.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/15/2024]
Abstract
β-N-Acetylglucosaminidases and/or β-N-acetylhexosaminidases (NAGs / Hexes) are crucial exonucleases, playing a crucial role in the insect molting process. SfHex3 and SfHex4 contain conserved catalytic domains of GH20 and GH20b, clustered into NAG2 and NAG1 group, respectively. SfHex3 and SfHex4 were mainly highly expressed in the 4th-5th instar nymphs, as well as in the integument and ovary. The expression level of SfHex3 gradually decreased in male and female adults, and SfHex4 on the first day of female was significantly higher than that on the first day of male. In addition, RNA interference (RNAi) results demonstrated that the downregulation of SfHex3 and SfHex4 expression in 5th-instar nymphs resulted in failed molting, and a high mortality. Furthermore, after RNAi with SfHex3 and SfHex4, the transcript levels on key genes of the chitin metabolism pathway (SfCHS1, SfCHS1a, SfCHS1b, SfTRE1, SfTRE2, SfCht5, and SfCht7) were significantly decreased compared to the control group. Meanwhile the expression levels of SfHex3 and SfHex4 were up-regulated after 6 h and 12 h of 20E treatment. And the transcription levels of SfHex3 and SfHex4 were significantly inhibited at nitenpyram LC20, LC50, and LC90 after 96 h of treatment, in 3rd nymphs of Sogatella furcifera. In conclusion, SfHex3 and SfHex4 play important roles in the nymphal development of S. furcifera, contributing to the molting process from nymph to adult. This study not only enhances our understanding of the nitenpyram in pest control, but also provides a foundation for the development of new control strategies using RNAi to targeting SfHex3 and SfHex4.
Collapse
Affiliation(s)
- Pan-Pan Guo
- Institute of Entomology, Guizhou University, China; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang 550025, China
| | - Xi-Bin Yang
- Plant Protection and Quarantine Station, Department of Agriculture and Rural Affairs of Guizhou Province, Guiyang 550001, China
| | - Hong Yang
- Institute of Entomology, Guizhou University, China; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang 550025, China.
| | - Cao Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| | - Gui-Yun Long
- School of Chinese Ethnic Medicine, Guizhou Minzu University, China; Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization in Guizhou Minzu University, State Ethnic Affairs Commission, Guiyang 550025, China
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, China; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang 550025, China.
| |
Collapse
|
3
|
Zhang S, Liu R, Lan F, Wang Y, Wang H, Liu Y, Ren C, Gao H. Effects of different rearing methods on cocoon silk strength in silkworm Bombyx mori (Lepidoptera: Bombycidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2292-2302. [PMID: 39475353 DOI: 10.1093/jee/toae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 01/11/2025]
Abstract
In recent years, the use of artificial diet to rear silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) has advanced rapidly in China. However, significant differences are found in the production and performance of silk from silkworms reared on artificial diet and mulberry leaves, thereby affecting the development of artificial diet usage in sericulture. To understand the reasons for these differences, we tested the following 3 rearing methods: all-instar mulberry leaf rearing (Mul), all-instar artificial diet rearing (Diet), and instars 1-3 reared on artificial diet followed by instars 4-5 reared on mulberry leaf (Mix). The results showed that the silk production was significantly lower under Diet than Mix and Mul. Electron microscopy images revealed that the protein synthesis and energy supply were decreased under Dier and Mix compared with Mul. Subsequent strength analysis indicated that the relative strength of silk was highest under Mix, followed by Mul, and weakest under Diet. However, no significant differences in elongation were observed among treatments. The β-sheet content of silk was significantly higher under Mix than Diet and Mul, and a similar trend was observed for the crystallinity. Furthermore, the elevated expression of BmChiNAG and the reduced expression of BmTpn genes may be a significant factor for the notable disparities in cocoon silk fineness and strength among the threes. These findings provide deep insights into the differences in silk produced by silkworms reared on mulberry leaves and artificial diet, as well as providing a reference for improving artificial diet for rearing silkworms.
Collapse
Affiliation(s)
- Shengxiang Zhang
- Department of Sericulture, College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
| | - Ran Liu
- Department of Sericulture, College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
| | - Fengjie Lan
- Department of Sericulture, Sericulture and Edible Fungus Institute, Yibin Academy of Agricultural Sciences, Yibin, Sichuan 644699, China
| | - Yi Wang
- Department of Sericulture, Sericulture and Edible Fungus Institute, Yibin Academy of Agricultural Sciences, Yibin, Sichuan 644699, China
| | - Huizhen Wang
- Department of Sericulture, College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
| | - Yangyang Liu
- Department of Sericulture, College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
| | - Chunjiu Ren
- Department of Sericulture, College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
| | - Huiju Gao
- Department of Sericulture, College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
4
|
Feng D, Yan C, Yuan L, Jia Y, Sun Y, Zhang J. Genome-wide identification of crustacyanin and function analysis of one isoform high-expression in carapace from Neocaridina denticulata sinensis. Int J Biol Macromol 2024; 278:135070. [PMID: 39187096 DOI: 10.1016/j.ijbiomac.2024.135070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Lipocalin proteins transport hydrophobic molecules, including apolipoprotein D, retinol-binding protein, and crustacyanin (CRCN). CRCN can combine with astaxanthin to cause a bathochromic shift in the emission spectrum of astaxanthin from red to blue. Therefore, CRCN influences the colors and patterns of crustaceans, which are important for various biological functions such as camouflage, reproduction, and communication. For aquatic organisms, body color is economically important and can be indicative of habitat water quality. In this study, thirteen CRCN genes (NdCRCNs) were first discovered in Neocaridina denticulata sinensis, contradicting prior findings of a few isoform genes in a species. The expression pattern of NdCRCNs in tissues showed that the expression of one CRCN isoform gene, named NdCRCN-30, was the highest in the carapace. In situ hybridization (ISH) analysis revealed that NdCRCN-30 was predominantly distributed in the outer epidermis of shrimp. Interference of NdCRCN-30 could cause a change in the color of the carapace. RNA-seq was performed after knockdown with the NdCRCN-30, and differential gene enrichment analysis revealed that this gene is primarily associated with antioxidant function, pigmentation, and molting. Overall, our results will provide new insights into the biological function of the CRCN and genetic breeding for changing body color in economic crustaceans.
Collapse
Affiliation(s)
- Dandan Feng
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Congcong Yan
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Longbin Yuan
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, China
| | - Yuewen Jia
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yuying Sun
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, China.
| | - Jiquan Zhang
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
5
|
Olasard P, Suksri P, Taneerat C, Rungrassamee W, Sathapondecha P. In silico identification and functional study of long non-coding RNA involved in acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus infection in white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109768. [PMID: 39013534 DOI: 10.1016/j.fsi.2024.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) caused by toxin-producing Vibrio parahaemolyticus (VpAHPND) has severely affected shrimp production. Long non-coding RNA (lncRNA), a regulatory non-coding RNA, which can play important function in shrimp disease responses. This study aimed to identify and investigate the role of lncRNA involved in VpAHPND infection in Pacific white shrimp, Litopenaeus vannamei. From a total of 368,736 de novo assembled transcripts, 67,559 were identified as putative lncRNAs, and only 72 putative lncRNAs showed differential expression between VpAHPND-infected and normal shrimp. The six candidate lncRNAs were validated for their expression profiles during VpAHPND infection and tissue distribution using RT-qPCR. The role of lnc2088 in response to VpAHPND infection was investigated through RNA interference. The result indicated that the suppression of lnc2088 expression led to an increase in shrimp mortality after VpAHPND infection. To explore the set of genes involved in lnc2088 knockdown, RNA sequencing was performed. A total of 275 differentially expressed transcripts were identified in the hepatopancreas of lnc2088 knockdown shrimp. The expression profiles of five candidate metabolic and immune-related genes were validated in lnc2088 knockdown and VpAHPND-infected shrimp. The result showed that the expression of ChiNAG was significantly increased, while that of NCBP1, WIPF2, and NFKB1 was significantly downregulated in ds2088-injected shrimp. Additionally, the expression of NFKB1, NCBP1 and WIPF2 was significantly increased, whereas that of ChiNAG and CUL5 were significantly decreased after infection with VpAHPND. Our work identified putative lncRNA profiles in L. vannamei in response to VpAHPND infection and investigated the role of lncRNA in shrimp immunity.
Collapse
Affiliation(s)
- Praewrung Olasard
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Phassorn Suksri
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Chanikan Taneerat
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wanilada Rungrassamee
- Biosensing and Bioprospectiing Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Ponsit Sathapondecha
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
6
|
Lu Z, Zhu Q, Bai Y, Zhao X, Wang H, Peng X, Luo Z, Zhang Y. A fungal pathogen secretes a cell wall-associated β-N-acetylhexosaminidase that is co-expressed with chitinases to contribute to infection of insects. PEST MANAGEMENT SCIENCE 2024; 80:4699-4713. [PMID: 38771009 DOI: 10.1002/ps.8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND β-N-acetylhexosaminidases (HEXs) are widely distributed in fungi and involved in cell wall chitin metabolism and utilization of chitin-containing substrates. However, details of the fungal pathogens-derived HEXs in the interaction with their hosts remain limited. RESULTS An insect nutrients-induced β-N-acetylhexosaminidase, BbHex1, was identified from the entomopathogenic fungus Beauveria bassiana, which was involved in cell wall modification and degradation of insect cuticle. BbHex1 was localized to cell wall and secreted, and displayed enzyme activity to degrade the chitinase-hydrolyzed product (GlcNAc)2. Disruption of BbHex1 resulted in a significant decrease in the level of cell wall chitin in the presence of insect nutrients and during infection of insects, with impaired ability to penetrate insect cuticle, accompanying downregulated cell wall metabolism-involved and cuticle-degrading chitinase genes. However, the opposite phenotypes were examined in the gene overexpression strain. Distinctly altered cell wall structures caused by BbHex1 mutation and overexpression led to the easy activation and evasion (respectively) of insect immune response during fungal infection. As a result, BbHex1 contributed to fungal virulence. Bioinformatics analysis revealed that promoters of some co-expressed chitinase genes with the BbHex1 promoter shared conserved transcription factors Skn7, Msn2 and Ste12, and CreA-binding motifs, implying co-regulation of those genes with BbHex1. CONCLUSION These data support a mechanism that the fungal pathogen specifically expresses BbHex1, which is co-expressed with chitinases to modify cell wall for evasion of insect immune recognition and to degrade insect cuticle, and contributes to the fungal virulence against insects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhuoyue Lu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| | - Qiankuan Zhu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| | - Yuting Bai
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| | - Xin Zhao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| | - Huifang Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| | - Xinxin Peng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Beibei Culture Collection of Chongqing Agricultural Microbiology, Chongqing, People's Republic of China
| |
Collapse
|
7
|
Tahir A, Siddiqi AR, Maryam A, Chaitanya Vedithi S, Blundell TL. Structure-guided computational insecticide discovery targeting β-N-acetyl-D-hexosaminidase of Ostrinia furnacalis. J Biomol Struct Dyn 2023; 42:11717-11730. [PMID: 37814544 PMCID: PMC11573315 DOI: 10.1080/07391102.2023.2264394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Ostrinia furnacalis is a species of moth in the Crambidae family that is harmful to maize and other corn crops in Southeast Asia and the Western Pacific regions. Ostrinia furnacalis causes devastating losses to economically important corn fields. The β-N-acetyl-D-hexosaminidase is an essential enzyme in O. furnacalis and its substrate binding +1 active site is different from that of the plants and humans β-N-acetyl-D-hexosaminidases. To develop environment-friendly insecticides against OfHex1, we conducted structure-guided computational insecticide discovery to identify potential inhibitors that can bind the active site and inhibit the substrate binding and activity of the enzyme. We adopted a three-pronged strategy to conduct virtual screening using Glide and virtual screening workflow (VSW) in Schrödinger Suite-2022-3, against crystal structures of OfHex1 (PDB Id:3NSN), its homologue in humans (PDB Id: 1NP0) and Alphafold model of β-N-acetyl-D-hexosaminidase from Trichogramma pretiosum, an egg parasitoid that protects the crops from O. furnacalis. A library of 20,313 commercially available and "insecticide-like" compounds was extracted from published literature. LigPrep enabled 44,943 ready-to-dock conformers generation. Glide docking revealed 18 OfHex1-specific hits that were absent in human and T. pretiosum screens. Reference docking was conducted using inhibitors/natural ligands in the crystal structures and hits with better docking scores than the reference were selected for MD simulations using Desmond to understand the stability of hit-target interactions. We noted five compounds that bound to OfHex1 TMX active-site based on their docking scores, consistent binding as noted by MD simulations and their insecticide/pesticide likeliness as noted by the Comprehensive Pesticide Likeness Analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adeena Tahir
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Arooma Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Sundeep Chaitanya Vedithi
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Heart and Lung Research Institute (HLRI), Cambridge, United Kingdom
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Heart and Lung Research Institute (HLRI), Cambridge, United Kingdom
| |
Collapse
|
8
|
Transcriptome Analysis Reveals That SREBP Modulates a Large Repertoire of Genes Involved in Key Cellular Functions in Penaeus vannamei, although the Majority of the Dysregulated Genes Are Unannotated. Genes (Basel) 2022; 13:genes13112057. [PMID: 36360293 PMCID: PMC9690432 DOI: 10.3390/genes13112057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) play vital roles in fatty acid metabolism and other metabolic processes in mammals. However, in penaeid shrimp, the repertoire of genes modulated by SREBP is unknown. Here, RNA interference-mediated knockdown followed by transcriptome sequencing on the Illumina Novaseq 6000 platform was used to explore the genes modulated by SREBP in Penaeus vannamei hepatopancreas. A total of 706 differentially expressed genes (DEGs) were identified, out of which 282 were upregulated and 424 downregulated. Although gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that most of the downregulated DEGs were involved in physiological processes related to immunity, metabolism, and cellular signaling pathways, many of the dysregulated genes have uncharacterized functions. While most of the dysregulated genes were annotated in metabolic processes, such as carbohydrate metabolism, lipid metabolism, signal transduction, and immune system, a large number (42.21%) are uncharacterized. Collectively, our current data revealed that SREBP modulates many genes involved in crucial physiological processes, such as energy metabolism, immune response, and cellular signaling pathways, as well as numerous genes with unannotated functions, in penaeid shrimp. These findings indicated that our knowledge of the repertoire of genes modulated by SREBP in shrimp lags behind that of mammals, probably due to limited research or because the complete genome of P. vannamei has just been sequenced.
Collapse
|