1
|
Ambrosini P, Miliziano D, Liberti GD, Lorenzini D, Marchesi S, Bassetti A, Tamborini E, Leporati R, Beninato T, Mazzeo L, Brambilla M, Ganzinelli M, Prelaj A, Proto C, Braud FGD, Russo GL, Occhipinti M. Histologic Transformation of ALK-Rearranged Lung Adenocarcinomas to High-Grade LCNEC: Clinical and Molecular Description of Three Cases. Clin Lung Cancer 2025; 26:e11-e17. [PMID: 39665942 DOI: 10.1016/j.cllc.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024]
Affiliation(s)
- Paolo Ambrosini
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Daniela Miliziano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giorgia Di Liberti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniele Lorenzini
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Marchesi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anna Bassetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Tamborini
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rita Leporati
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Teresa Beninato
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Mazzeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marta Brambilla
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Ganzinelli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Arsela Prelaj
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Claudia Proto
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Giuseppe Lo Russo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mario Occhipinti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
2
|
Hofman P, Berezowska S, Kazdal D, Mograbi B, Ilié M, Stenzinger A, Hofman V. Current challenges and practical aspects of molecular pathology for non-small cell lung cancers. Virchows Arch 2024; 484:233-246. [PMID: 37801103 PMCID: PMC10948551 DOI: 10.1007/s00428-023-03651-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
The continuing evolution of treatment options in thoracic oncology requires the pathologist to regularly update diagnostic algorithms for management of tumor samples. It is essential to decide on the best way to use tissue biopsies, cytological samples, as well as liquid biopsies to identify the different mandatory predictive biomarkers of lung cancers in a short turnaround time. However, biological resources and laboratory member workforce are limited and may be not sufficient for the increased complexity of molecular pathological analyses and for complementary translational research development. In this context, the surgical pathologist is the only one who makes the decisions whether or not to send specimens to immunohistochemical and molecular pathology platforms. Moreover, the pathologist can rapidly contact the oncologist to obtain a new tissue biopsy and/or a liquid biopsy if he/she considers that the biological material is not sufficient in quantity or quality for assessment of predictive biomarkers. Inadequate control of algorithms and sampling workflow may lead to false negative, inconclusive, and incomplete findings, resulting in inappropriate choice of therapeutic strategy and potentially poor outcome for patients. International guidelines for lung cancer treatment are based on the results of the expression of different proteins and on genomic alterations. These guidelines have been established taking into consideration the best practices to be set up in clinical and molecular pathology laboratories. This review addresses the current predictive biomarkers and algorithms for use in thoracic oncology molecular pathology as well as the central role of the pathologist, notably in the molecular tumor board and her/his participation in the treatment decision-making. The perspectives in this setting will be discussed.
Collapse
Affiliation(s)
- Paul Hofman
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France.
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France.
| | - Sabina Berezowska
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniel Kazdal
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Centers for Personalized Medicine (ZPM), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Baharia Mograbi
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France
| | - Marius Ilié
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France
| | - Albrecht Stenzinger
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Centers for Personalized Medicine (ZPM), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Véronique Hofman
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France
| |
Collapse
|
3
|
Belloni A, Pugnaloni A, Rippo MR, Di Valerio S, Giordani C, Procopio AD, Bronte G. The cell line models to study tyrosine kinase inhibitors in non-small cell lung cancer with mutations in the epidermal growth factor receptor: A scoping review. Crit Rev Oncol Hematol 2024; 194:104246. [PMID: 38135018 DOI: 10.1016/j.critrevonc.2023.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) represents ∼85% of all lung cancers and ∼15-20% of them are characterized by mutations affecting the Epidermal Growth Factor Receptor (EGFR). For several years now, a class of tyrosine kinase inhibitors was developed, targeting sensitive mutations affecting the EGFR (EGFR-TKIs). To date, the main burden of the TKIs employment is due to the onset of resistance mutations. This scoping review aims to resume the current situation about the cell line models employed for the in vitro evaluation of resistance mechanisms induced by EGFR-TKIs in oncogene-addicted NSCLC. Adenocarcinoma results the most studied NSCLC histotype with the H1650, H1975, HCC827 and PC9 mutated cell lines, while Gefitinib and Osimertinib the most investigated inhibitors. Overall, data collected frame the current advancement of this topic, showing a plethora of approaches pursued to overcome the TKIs resistance, from RNA-mediated strategies to the innovative combination therapies.
Collapse
Affiliation(s)
- Alessia Belloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Armanda Pugnaloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Silvia Di Valerio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Chiara Giordani
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy
| | - Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy.
| |
Collapse
|
4
|
Berezowska S, Maillard M, Keyter M, Bisig B. Pulmonary squamous cell carcinoma and lymphoepithelial carcinoma - morphology, molecular characteristics and differential diagnosis. Histopathology 2024; 84:32-49. [PMID: 37936498 DOI: 10.1111/his.15076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
Squamous cell carcinoma (SCC) comprises one of the major groups of non-small-cell carcinoma of the lung, and is subtyped into keratinising, non-keratinising and basaloid SCC. SCC can readily be diagnosed using histomorphology alone in keratinising SCC. Confirmatory immunohistochemical analyses should always be applied in non-keratinising and basaloid tumours to exclude differential diagnoses, most prominently adenocarcinoma and high-grade neuroendocrine carcinoma, which may have important therapeutic consequences. According to the World Health Organisation (WHO) classification 2015, the diagnosis of SCC can be rendered in resections of morphologically ambiguous tumours with squamous immunophenotype. In biopsies and cytology preparations in the same setting the current guidelines propose a diagnosis of 'non-small-cell carcinoma, favour SCC' in TTF1-negative and p40-positive tumours to acknowledge a possible sampling bias and restrict extended immunohistochemical evaluation in order to preserve tissue for molecular testing. Most SCC feature a molecular 'tobacco-smoke signature' with enrichment in GG > TT mutations, in line with the strong epidemiological association of SCC with smoking. Targetable mutations are extremely rare but they do occur, in particular in younger and non- or light-smoking patients, warranting molecular investigations. Lymphoepithelial carcinoma (LEC) is a poorly differentiated SCC with a syncytial growth pattern and a usually prominent lymphoplasmacytic infiltrate and frequent Epstein-Barr virus (EBV) association. In this review, we describe the morphological and molecular characteristics of SCC and LEC and discuss the most pertinent differential diagnoses.
Collapse
Affiliation(s)
- Sabina Berezowska
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Marie Maillard
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Mark Keyter
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Bettina Bisig
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Takano AM, Chow CY, Lim KH. Practical challenges in lung cancer pathology: bedside care to treatment decisions. Curr Opin Pulm Med 2024; 30:48-57. [PMID: 37937545 DOI: 10.1097/mcp.0000000000001034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
PURPOSE OF REVIEW Lung cancer is one of the most common malignancies in the whole world, and the pulmonologist is generally the first medical professional to meet the patient and decide what method of tumour sampling is preferable in each specific case. It is imperative for pulmonary physicians to be aware of the intricacies of the diagnostic process, and understand the multiple challenges that are encountered, from the moment the tissue specimen leaves their offices and is sent to the pathology laboratory, until the diagnosis reaches the patient and treating physician. RECENT FINDINGS The new 2021 WHO classification of thoracic tumours recommended a minimum immunohistochemical (IHC) diagnostic panel for nonsmall cell lung cancer (NSCLC), and following publications of different institutional and country-based guidelines, advocated basic molecular testing for epithelial growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK) and programmed cell death ligand 1 (PD-L1) to be initiated by the diagnosing pathologist in all cases of biopsy or resection specimens. In general, sequential testing for molecular biomarkers was not recommended due to tissue wastage, instead next generation sequencing (NGS) diagnostic panel was supported. SUMMARY The lung cancer specimen has to undergo histologic diagnosis through a panel of IHC studies, and -preferably, a reflex molecular study by NGS including several targetable genes. Adequate communication and clinical information preclude the pathologist from "overusing" the tissue for additional studies, while focusing on preservation of material for molecular testing.
Collapse
Affiliation(s)
- Angela Maria Takano
- Department of Anatomical Pathology, Singapore General Hospital, Duke-NUS Medical School
| | - Chun Yuen Chow
- Department of Anatomical Pathology, Singapore General Hospital, Duke-NUS Medical School
| | - Kiat Hon Lim
- Division of Pathology, Singapore General Hospital, Duke-NUS Medical School, Singapore
| |
Collapse
|
6
|
Lingling X, Maoxi C, Wei Y, Jieting Z, Yuanyuan Y, Ning X. Transformation of NSCLC to SCLC harboring EML4-ALK fusion with V1180L mutation after alectinib resistance and response to lorlatinib: A case report and literature review. Lung Cancer 2023; 186:107415. [PMID: 37907052 DOI: 10.1016/j.lungcan.2023.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Histological transformation from non-small cell lung cancer (NSCLC) to small cell lung cancer (SCLC) with anaplastic lymphoma kinase (ALK) positivity is extremely uncommon in ALK-positive NSCLC. To date, there have been limited reports regarding cases of SCLC transformation, and the optimal therapeutic strategies and prognosis for such patients remain unclear. This case is the first to describe the effectiveness of lorlatinib in treating a patient with SCLC that transformed from NSCLC harboring the ALK fusion V1180L mutation following acquired resistance to alectinib therapy. CASE DESCRIPTION We present a case of alectinib-induced transformation from ALK-positive NSCLC to SCLC with an ALK V1180L mutation after acquiring alectinib resistance. The patient achieved disease remission with lorlatinib treatment following ineffective chemotherapy. In April 2022, a 53-year-old male was diagnosed with ALK-positive advanced poorly differentiated adenocarcinoma with neuroendocrine differentiation in the left lower lobe of the lung. The diagnosis was accompanied by multiple bone metastases and brain metastases, categorizing the stage as cT3N2M1. Following 8 months of alectinib treatment, chest computed tomography (CT) and cranial magnetic resonance imaging (MRI) revealed disease progression. Pathological and genetic analyses indicated the transformation to pulmonary small cell carcinoma accompanied by ALK fusion V1180L mutation. After the administration of two cycles of EP chemotherapy with unsatisfactory response, oral lorlatinib therapy was initiated. A subsequent month of treatment resulted in notable reduction of the left lung lesion according to chest CT, as well as a significant decrease in intracranial lesions based on cranial MRI. After taking lorlatinib for 5 months, the lesions continue to shrink, and there is a noticeable improvement in the patient's quality of life. Currently, the patient remains in a state of sustained improvement. CONCLUSION This study affirms the efficacy of lorlatinib in patients with ALK-positive SCLC transformation harboring the V1180L mutation. Furthermore, it underscores the imperative of conducting genetic testing in patients who transition to SCLC following ALK-TKI resistance, as targeted therapies may remain efficacious if a genetic driver is identified.
Collapse
Affiliation(s)
- Xu Lingling
- Department of Oncology, Anhui Chest Hospital, China
| | - Chen Maoxi
- Department of Oncology, Anhui Chest Hospital, China
| | - Ye Wei
- Department of Pathology, Anhui Chest Hospital, China
| | - Zhao Jieting
- Department of Pathology, Anhui Chest Hospital, China
| | - Yao Yuanyuan
- Department of Oncology, Anhui Chest Hospital, China
| | - Xu Ning
- Department of Thoracic Surgery, Anhui Chest Hospital, China.
| |
Collapse
|
7
|
Hofman P. Matched tissue and liquid biopsies for advanced non-small cell lung cancer patients A potentially indispensable complementary approach. Transl Oncol 2023; 35:101735. [PMID: 37413719 PMCID: PMC10366644 DOI: 10.1016/j.tranon.2023.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
The introduction of liquid biopsies (LB) has brought forth a number of therapeutic opportunities into the domain of thoracic oncology. Many of which have been adopted for care of patients presenting with advanced non-squamous non-small cell lung cancer (aNS-NSCLC). For example, one of the most frequent indications to perform a LB in these patients, at least in Europe, is for patients treated with tyrosine kinase inhibitors (TKIs) targeting EGFR and ALK genomic alterations when the tumor progresses. A tissue biopsy (TB) must then be taken, ideally from a site of a tumor that progresses, in particular if the LB does not permit detection of a mechanism of resistance to TKI. A LB from a patient with aNS-NSCLC is recommended before first-line therapy if no tissue and/or cytological material is accessible or if the extracted nucleic acid is insufficient in amount and/or of poor quality. At present a LB and a TB are rarely performed simultaneously before treatment and/or on tumor progression. This complementary/matched testing approach is still controversial but needs to be better evaluated to determine the true benefit to care of patients. This review provides an update on the complementarity of the LB and TB method for care of patients presenting with aNS-NSCLC.
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology de Pathologie, University Côte d'Azur, FHU OncoAge, Biobank BB-0033-00025, IHU RespireRA, 30 Avenue de la Voie Romaine, 01, Nice 06002 CEDEX, France.
| |
Collapse
|
8
|
Stridfeldt F, Cavallaro S, Hååg P, Lewensohn R, Linnros J, Viktorsson K, Dev A. Analyses of single extracellular vesicles from non-small lung cancer cells to reveal effects of epidermal growth factor receptor inhibitor treatments. Talanta 2023; 259:124553. [PMID: 37084607 DOI: 10.1016/j.talanta.2023.124553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Precision cancer medicine has changed the treatment landscape of non-small cell lung cancer (NSCLC) as illustrated by the introduction of tyrosine kinase inhibitors (TKIs) towards mutated epidermal growth factor receptor (EGFR). However, as responses to EGFR-TKIs are heterogenous among NSCLC patients, there is a need for ways to early monitor changes in treatment response in a non-invasive way e.g., in patient's blood samples. Recently, extracellular vesicles (EVs) have been identified as a source of tumor biomarkers which could improve on non-invasive liquid biopsy-based diagnosis of cancer. However, the heterogeneity in EVs is high. Putative biomarker candidates may be hidden in the differential expression of membrane proteins in a subset of EVs hard to identify using bulk techniques. Using a fluorescence-based approach, we demonstrate that a single-EV technique can detect alterations in EV surface protein profiles. We analyzed EVs isolated from an EGFR-mutant NSCLC cell line, which is refractory to EGFR-TKIs erlotinib and responsive to osimertinib, before and after treatment with these drugs and after cisplatin chemotherapy. We studied expression level of five proteins; two tetraspanins (CD9, CD81), and three markers of interest in lung cancer (EGFR, programmed death-ligand 1 (PD-L1), human epidermal growth factor receptor 2 (HER2)). The data reveal alterations induced by the osimertinib treatment compared to the other two treatments. These include the growth of the PD-L1/HER2-positive EV population, with the largest increase in vesicles exclusively expressing one of the two proteins. The expression level per EV decreased for these markers. On the other hand, both the TKIs had a similar effect on the EGFR-positive EV population.
Collapse
Affiliation(s)
- Fredrik Stridfeldt
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden.
| | - Sara Cavallaro
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, 171 64, Solna, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, 171 64, Solna, Sweden; Theme Cancer, Medical Unit head and neck, lung, and skin tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-171 64, Solna, Sweden
| | - Jan Linnros
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institutet, 171 64, Solna, Sweden
| | - Apurba Dev
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden; Department of Electrical Engineering, Ångströmslaboratoriet, Uppsala University, Uppsala, Box 534, SE-751-21, Sweden.
| |
Collapse
|