1
|
Bordeaux ZA, Reddy SV, Choi J, Braun G, McKeel J, Lu W, Yossef SM, Ma EZ, West CE, Kwatra SG, Kwatra MM. Transcriptomic and proteomic analysis of tumor suppressive effects of GZ17-6.02 against mycosis fungoides. Sci Rep 2024; 14:1955. [PMID: 38263212 PMCID: PMC10805783 DOI: 10.1038/s41598-024-52544-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024] Open
Abstract
Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma (CTCL). Despite having a wide variety of therapeutic agents available for the treatment of MF, patients often suffer from a significant decrease in quality of life and rarely achieve long-term remission or complete cure, highlighting a need to develop novel therapeutic agents for this disease. The present study was undertaken to evaluate the efficacy of a novel anti-tumor agent, GZ17-6.02, which is composed of curcumin, harmine, and isovanillin, against MF in vitro and in murine models. Treatment of HH and MyLa cells with GZ17-6.02 inhibited the growth of both cell lines with IC50 ± standard errors for growth inhibition of 14.37 ± 1.19 µg/mL and 14.56 ± 1.35 µg/mL, respectively, and increased the percentage of cells in late apoptosis (p = .0304 for HH; p = .0301 for MyLa). Transcriptomic and proteomic analyses revealed that GZ17-6.02 suppressed several pathways, including tumor necrosis factor (TNF)-ɑ signaling via nuclear factor (NF)-kB, mammalian target of rapamycin complex (mTORC)1, and Pi3K/Akt/mTOR signaling. In a subcutaneous tumor model, GZ17-6.02 decreased tumor volume (p = .002) and weight (p = .009) compared to control conditions. Proteomic analysis of tumor samples showed that GZ17-6.02 suppressed the expression of several proteins that may promote CTCL growth, including mitogen-activated protein kinase (MAPK)1, MAPK3, Growth factor receptor bound protein (GRB)2, and Mediator of RAP80 interactions and targeting subunit of 40 kDa (MERIT)40.
Collapse
Affiliation(s)
- Zachary A Bordeaux
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Sriya V Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Gabriella Braun
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Jaimie McKeel
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Weiying Lu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Selina M Yossef
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Emily Z Ma
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
| | - Cameron E West
- Genzada Pharmaceuticals, Hutchinson, USA
- US Dermatology Partners, Wichita, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, USA
| |
Collapse
|
2
|
YU Z, LI J, JIANG J, LI Y, LIN L, XIA Y, WANG L. [miRNA-128-3p inhibits malignant behavior of glioma cells by downregulating KLHDC8A expression]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1447-1459. [PMID: 37814858 PMCID: PMC10563106 DOI: 10.12122/j.issn.1673-4254.2023.09.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE To determine whether miRNA-128-3p regulates malignant biological behavior of glioma cells by targeting KLHDC8A. METHODS Dual-luciferase reporter assays, qRT-PCR and Western blotting were used to verify the targeting of miRNA-128-3p to KLHDC8A. Edu assay, flow cytometry, Transwell assay and would healing assay were used to determine the effects of changes in miRNA-128-3p and KLHDC8A expression levels on malignant behavior of glioma cells. Rescue experiment was carried out to verify that miRNA-128-3p regulated glioma cell proliferation, apoptosis, invasion and migration by targeting KLHDC8A. RESULTS The expression level of KLHDC8A was significantly increased in high-grade glioma tissue and was closely related to a poor survival outcome of the patients. Overexpression of KLHDC8A promoted glioma cell proliferation, migration and invasion, and miRNA-128-3p overexpression inhibited proliferative and metastatic capacities of glioma cells. Mechanistically, KLHDC8A expression was directly modulated by miRNA-128-3p, which, by targeting KLHDC8A, inhibited malignant behavior of glioma cells. CONCLUSION Upregulation of miRNA-128-3p inhibits uncontrolled growth of glioma cells by negatively regulating KLHDC8A expression and its downstream effectors, suggesting that the miRNA-128-3p-KLHDC8A axis may serve as a potential prognostic indicator and a therapeutic target for developing new strategies for glioma treatment.
Collapse
Affiliation(s)
- Zhengtao YU
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, Haikou 570208, China中南大学湘雅医学院附属海口医院神经外科,海南 海口 570208
| | - Jiameng LI
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, Haikou 570208, China中南大学湘雅医学院附属海口医院神经外科,海南 海口 570208
| | - Junwen JIANG
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, Haikou 570208, China中南大学湘雅医学院附属海口医院神经外科,海南 海口 570208
| | - You LI
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, Haikou 570208, China中南大学湘雅医学院附属海口医院神经外科,海南 海口 570208
| | - Long LIN
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, Haikou 570208, China中南大学湘雅医学院附属海口医院神经外科,海南 海口 570208
| | - Ying XIA
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, Haikou 570208, China中南大学湘雅医学院附属海口医院神经外科,海南 海口 570208
| | - Lei WANG
- Department of Neurosurgery, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410006, China中南大学湘雅医学院附属肿瘤医院神经外科,湖南 长沙 410006
| |
Collapse
|
3
|
Bordeaux ZA, Choi J, Braun G, Davis C, Marani M, Lee K, Samuel C, Adams J, Windom R, Pollizzi A, Kambala A, Cornman H, Reddy SV, Lu W, Oladipo OO, Alphonse MP, West CE, Kwatra SG, Kwatra MM. Topical GZ21T Inhibits the Growth of Actinic Keratoses in a UVB-Induced Model of Skin Carcinogenesis. JID INNOVATIONS 2023; 3:100206. [PMID: 37533581 PMCID: PMC10392087 DOI: 10.1016/j.xjidi.2023.100206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/31/2023] [Accepted: 03/03/2023] [Indexed: 08/04/2023] Open
Abstract
Actinic keratoses (AKs) are premalignant intraepidermal neoplasms that occur as a result of cumulative sun damage. AKs commonly relapse, and up to 16% undergo malignant transformation into cutaneous squamous cell carcinoma. There is a need for novel therapies that reduce the quantity and surface area of AKs as well as prevent malignant transformation to cutaneous squamous cell carcinomas. We recently showed that GZ17-6.02, an anticancer agent composed of curcumin, haramine, and isovanillin, inhibited the growth of H297.T cells. This study evaluated the efficacy of a topical formulation of GZ17-6.02, known as GZ21T, in a murine model of AK generated by exposing SKH1 mice to UVR. Treatment of mice with topical GZ21T inhibited the growth of AKs by decreasing both lesion count (P = 0.012) and surface area occupied by tumor (P = 0.002). GZ21T also suppressed the progression of AKs to cutaneous squamous cell carcinoma by decreasing the count (P = 0.047) and surface area (P = 0.049) of lesions more likely to represent cutaneous squamous cell carcinoma. RNA sequencing and proteomic analyses revealed that GZ21T suppressed several pathways, including MAPK (P = 0.025), phosphoinositide 3-kinase-protein kinase B (P = 0.04), HIF-1α (P = 0.016), Wnt (P = 0.025), insulin (P = 0.018), and ERBB (P = 0.016) signaling. GZ21T also upregulated the autophagy-promoting protein AMPK while suppressing proteins such as PD-L1, glutaminase, pAkt1 S473, and eEF2K.
Collapse
Affiliation(s)
- Zachary A. Bordeaux
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
| | - Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
| | - Gabriella Braun
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
| | - Cole Davis
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
| | - Melika Marani
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christeen Samuel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jackson Adams
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
| | - Reed Windom
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
| | - Anthony Pollizzi
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
| | - Anusha Kambala
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hannah Cornman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sriya V. Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Weiying Lu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Olusola O. Oladipo
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cameron E. West
- Genzada Pharmaceuticals, Hutchinson, Kansas, USA
- US Dermatology Partners, Dallas, Texas, USA
| | - Shawn G. Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Madan M. Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, South Carolina, USA
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, South Carolina, USA
| |
Collapse
|
4
|
EGFRvIII Promotes the Proneural–Mesenchymal Transition of Glioblastoma Multiforme and Reduces Its Sensitivity to Temozolomide by Regulating the NF-κB/ALDH1A3 Axis. Genes (Basel) 2023; 14:genes14030651. [PMID: 36980923 PMCID: PMC10048499 DOI: 10.3390/genes14030651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
(1) Background: Glioblastoma multiforme (GBM) is the most common and malignant intracranial tumor in adults. At present, temozolomide (TMZ) is recognized as the preferred chemotherapeutic drug for GBM, but some patients have low sensitivity to TMZ or chemotherapy resistance to TMZ. Our previous study found that GBM patients with EGFRvIII (+) have low sensitivity to TMZ. However, the reasons and possible mechanisms of the chemoradiotherapy resistance in GBM patients with EGFRvIII (+) are not clear. (2) Methods: In this study, tissue samples of patients with GBM, GBM cell lines, glioma stem cell lines, and NSG mice were used to explore the causes and possible mechanisms of low sensitivity to TMZ in patients with EGFRvIII (+)-GBM. (3) Results: The study found that EGFRvIII promoted the proneural–mesenchymal transition of GBM and reduced its sensitivity to TMZ, and EGFRvIII regulated of the expression of ALDH1A3. (4) Conclusions: EGFRvIII activated the NF-κB pathway and further regulated the expression of ALDH1A3 to promote the proneural–mesenchymal transition of GBM and reduce its sensitivity to TMZ, which will provide an experimental basis for the selection of clinical drugs for GBM patients with EGFRvIII (+).
Collapse
|