1
|
Groopman E, Mohan S, Waddell A, Wilke M, Fernandez R, Weaver M, Chen H, Liu H, Bali D, Baudet H, Clarke L, Hung C, Mao R, Pinto E Vairo F, Racacho L, Yuzyuk T, Craigen WJ, Goldstein J. Assessment of genes involved in lysosomal diseases using the ClinGen clinical validity framework. Mol Genet Metab 2024; 143:108593. [PMID: 39426251 PMCID: PMC11560485 DOI: 10.1016/j.ymgme.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Lysosomal diseases (LDs) are a heterogeneous group of rare genetic disorders that result in impaired lysosomal function, leading to progressive multiorgan system dysfunction. Accurate diagnosis is paramount to initiating targeted therapies early in the disease process in addition to providing prognostic information and appropriate support for families. In recent years, genomic sequencing technologies have become the first-line approach in the diagnosis of LDs. Understanding the clinical validity of the role of a gene in a disease is critical for the development of genomic technologies, such as which genes to include on next generation sequencing panels, and the interpretation of results from exome and genome sequencing. To this aim, the ClinGen Lysosomal Diseases Gene Curation Expert Panel utilized a semi-quantitative framework incorporating genetic and experimental evidence to assess the clinical validity of the 56 LD-associated genes on the Lysosomal Disease Network's list. Here, we describe the results, and the key themes and challenges encountered.
Collapse
Affiliation(s)
| | - Shruthi Mohan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amber Waddell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Meredith Weaver
- American College of Genetics and Genomics, Bethesda, MD, USA
| | - Hongjie Chen
- PreventionGenetics/Exact Sciences, Marshfield, WI, USA
| | | | | | - Heather Baudet
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lorne Clarke
- University of British Columbia, Vancouver, Canada
| | | | - Rong Mao
- ARUP, Salt Lake City, UT, USA; University of Utah, Salt Lake City, UT, USA
| | | | | | - Tatiana Yuzyuk
- ARUP, Salt Lake City, UT, USA; University of Utah, Salt Lake City, UT, USA
| | | | - Jennifer Goldstein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Tang M, Xia W, Song F, Liu C, Wang X, Zhou H, Mai K, He G. Loss of Gcn2 exacerbates gossypol induced oxidative stress, apoptosis and inflammation in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109727. [PMID: 38936520 DOI: 10.1016/j.fsi.2024.109727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Gossypol, a naturally occurring compound found in cottonseed meal, shows promising therapeutic potential for human diseases. However, within the aquaculture industry, it is considered an antinutritional factor. The incorporation of cottonseed meal into fish feed introduces gossypol, which induces intracellular stresses and hinders overall health of farmed fish. The aim of this study is to determine the role of General control nonderepressible 2 (gcn2), a sensor for intracellular stresses in gossypol-induced stress responses in fish. In the present study, we established two gcn2 knockout zebrafish lines. A feeding trial was conducted to assess the growth-inhibitory effect of gossypol in both wild type and gcn2 knockout zebrafish. The results showed that in the absence of gcn2, zebrafish exhibited increased oxidative stress and apoptosis when exposed to gossypol, resulting in higher mortality rates. In feeding trial, dietary gossypol intensified liver inflammation in gcn2-/- zebrafish, diminishing their growth and feed conversion. Remarkably, administering the antioxidant N-acetylcysteine (NAC) was effective in reversing the gossypol induced oxidative stress and apoptosis, thereby increasing the gossypol tolerance of gcn2-/- zebrafish. Exposure to gossypol induces more severe mitochondrial stress in gcn2-/- zebrafish, thereby inducing metabolic disorders. These results reveal that gcn2 plays a protective role in reducing gossypol-induced oxidative stress and apoptosis, attenuating inflammation responses, and enhancing the survivability of zebrafish in gossypol-challenged conditions. Therefore, maintaining appropriate activation of Gcn2 may be beneficial for fish fed diets containing gossypol.
Collapse
Affiliation(s)
- Mingjun Tang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Weiyi Xia
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Fei Song
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chengdong Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| | - Xuan Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Huihui Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Kangsen Mai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Gen He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
3
|
Davis G, Hameister B, Dunnum C, Vanderpas E, Carter B. Incorporating Primer Amplification Efficiencies in Quantitative Reverse Transcription Polymerase Chain Reaction Experiments; Considerations for Differential Gene Expression Analyses in Zebrafish. Zebrafish 2023; 20:189-199. [PMID: 37722027 DOI: 10.1089/zeb.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Quantitative reverse transcription polymerase chain reaction (RT-qPCR) is commonly used to measure the mRNA expression of target genes in zebrafish. Gene expression values from RT-qPCR are typically reported as relative fold-changes, and relative quantification of RT-qPCR data incorporates primer amplification efficiency values for each target gene. We describe the influence of the primer amplification efficiency analysis method on RT-qPCR gene expression fold-change calculations. This report describes (1) a sample analysis demonstrating incorporation of primer amplification efficiency into RT-qPCR analysis for comparing gene expression of a gene of interest between two groups when normalized to multiple reference genes, (2) the influence of differences in primer amplification efficiencies between measured genes on gene expression differences calculated from theoretical delta-Cq (dCq) values, and (3) an empirical comparison of the influence of three methods of defining primer amplification efficiency in gene expression analyses (delta-delta-Cq [ddCq], standard curve, LinRegPCR) using mRNA measurements of a set of genes in zebrafish embryonic development. Given the need to account for the influence of primer amplification efficiency along with the simplicity of using software programs (LinRegPCR) to measure primer amplification efficiency from RT-qPCR data, we encourage using empirical measurements of primer amplification efficiency for RT-qPCR analysis of differential gene expression in zebrafish.
Collapse
Affiliation(s)
- Gillian Davis
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, Wisconsin, USA
| | - Brianna Hameister
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, Wisconsin, USA
| | - Cora Dunnum
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, Wisconsin, USA
| | - Emily Vanderpas
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, Wisconsin, USA
| | - Brad Carter
- Department of Biology, University of Wisconsin Eau Claire, Eau Claire, Wisconsin, USA
| |
Collapse
|
4
|
Guo B, He X, Ge C, Xue M, Wang J, Longshaw M, Wang J, Liang X. A Natural Gas Fermentation Bacterial Meal (FeedKind®) as a Functional Alternative Ingredient for Fishmeal in Diet of Largemouth Bass, Micropterus salmoides. Antioxidants (Basel) 2022; 11:antiox11081479. [PMID: 36009198 PMCID: PMC9405052 DOI: 10.3390/antiox11081479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
A 10-week growth study was conducted to evaluate the effect of a natural gas fermentation bacterial meal (FeedKind®, FK) as a fishmeal (FM) alternative in largemouth bass (Micropterus salmoides) (48.0 ± 0.03 g). Four isonitrogenous and isoenergetic diets were formulated including one commercial control (C, 42% FM) and three experimental diets with gradient FK of 3% (FK3, 29%FM), 6% (FK6, 26%FM) and 9% (FK9, 23%FM), respectively. FK-fed groups showed significantly higher SR than that of C group. The WGR and SGR of fish fed FK3 and FK6 were significantly higher than those of FK9, but not statistical different from the C group. FK-fed groups showed higher apparent digestibility coefficients of dry matter and nutrients. Further, FK-fed groups increased the ratio of SOD/MDA in the plasma and liver, and the upregulation of intestinal Keap1 and downregulation of HIF1α was found in FK3. Furthermore, FK-fed groups showed higher microbial richness and diversity. Pearson correlation analysis found that antioxidant relevant biomarkers were negatively correlated with the relative abundance of certain potential beneficial bacteria. In conclusion, supplemented up to 3–6% FK replacing FM in a low FM diet of largemouth bass could increase growth, survival rate, antioxidant capacity, and improve gut microbiota.
Collapse
Affiliation(s)
- Boyuan Guo
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.G.); (X.H.); (C.G.); (M.X.)
| | - Xia He
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.G.); (X.H.); (C.G.); (M.X.)
| | - Chunyu Ge
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.G.); (X.H.); (C.G.); (M.X.)
| | - Min Xue
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.G.); (X.H.); (C.G.); (M.X.)
| | - Jia Wang
- Calysta (China) Company Limited, Shanghai 200041, China;
| | - Matt Longshaw
- Calysta (UK) Company Limited, Redcar TS10 4RF, Cleveland, UK;
| | - Jie Wang
- Feed Processing and Quality Control Innovation Team, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (J.W.); (X.L.)
| | - Xiaofang Liang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.G.); (X.H.); (C.G.); (M.X.)
- Correspondence: (J.W.); (X.L.)
| |
Collapse
|