1
|
Zhao X, Ren T, Li S, Wang X, Hou R, Guan Z, Liu D, Zheng J, Shi M. A new perspective on the therapeutic potential of tumor metastasis: targeting the metabolic interactions between TAMs and tumor cells. Int J Biol Sci 2024; 20:5109-5126. [PMID: 39430253 PMCID: PMC11489172 DOI: 10.7150/ijbs.99680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/02/2024] [Indexed: 10/22/2024] Open
Abstract
Tumor-associated macrophages (TAMs) undergo metabolic reprogramming, encompassing glucose, amino acid, fatty acid metabolism, tricarboxylic acid (TCA) cycle, purine metabolism, and autophagy, within the tumor microenvironment (TME). The metabolic interdependencies between TAMs and tumor cells critically influence macrophage recruitment, differentiation, M2 polarization, and secretion of epithelial-mesenchymal transition (EMT)-related factors, thereby activating intratumoral EMT pathways and enhancing tumor cell invasion and metastasis. Tumor cell metabolic alterations, including hypoxia, metabolite secretion, aerobic metabolism, and autophagy, affect the TME's metabolic landscape, driving macrophage recruitment, differentiation, M2 polarization, and metabolic reprogramming, ultimately facilitating EMT, invasion, and metastasis. Additionally, macrophages can induce tumor cell EMT by reprogramming their aerobic glycolysis. Recent experimental and clinical studies have focused on the metabolic interactions between macrophages and tumor cells to control metastasis and inhibit tumor progression. This review highlights the regulatory role of TAM-tumor cell metabolic codependencies in EMT, offering valuable insights for TAM-targeted therapies in highly metastatic tumors. Modulating the metabolic interplay between tumors and TAMs represents a promising therapeutic strategy for treating patients with metastatic cancers.
Collapse
Affiliation(s)
- Xuan Zhao
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Tong Ren
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Xu Wang
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, China
| |
Collapse
|
2
|
Araújo R, Fabris V, Lamb CA, Elía A, Lanari C, Helguero LA, Gil AM. Tumor Lipid Signatures Are Descriptive of Acquisition of Therapy Resistance in an Endocrine-Related Breast Cancer Mouse Model. J Proteome Res 2024; 23:2815-2829. [PMID: 37497607 PMCID: PMC11301694 DOI: 10.1021/acs.jproteome.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 07/28/2023]
Abstract
The lipid metabolism adaptations of estrogen and progesterone receptor-positive breast cancer tumors from a mouse syngeneic model are investigated in relation to differences across the transition from hormone-dependent (HD) to hormone-independent (HI) tumor growth and the acquisition of endocrine therapy (ET) resistance (HIR tumors). Results are articulated with reported polar metabolome results to complete a metabolic picture of the above transitions and suggest markers of tumor progression and aggressiveness. Untargeted nuclear magnetic resonance metabolomics was used to analyze tumor and mammary tissue lipid extracts. Tumor progression (HD-HI-HIR) was accompanied by increased nonesterified cholesterol forms and phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins, and plasmalogens) and decreased relative contents of triglycerides and fatty acids. Predominating fatty acids became shorter and more saturated on average. These results were consistent with gradually more activated cholesterol synthesis, β-oxidation, and phospholipid biosynthesis to sustain tumor growth, as well as an increase in cholesterol (possibly oxysterol) forms. Particular compound levels and ratios were identified as potential endocrine tumor HD-HI-HIR progression markers, supporting new hypotheses to explain acquired ET resistance.
Collapse
Affiliation(s)
- Rita Araújo
- Department
of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Victoria Fabris
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Caroline A. Lamb
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Andrés Elía
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Claudia Lanari
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Luisa A. Helguero
- iBIMED
- Institute of Biomedicine, Department of Medical Sciences, Universidade de Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal
| | - Ana M. Gil
- Department
of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Liu H, Yao M, Ren J. Codonopsis pilosula-derived glycopeptide dCP1 promotes the polarization of tumor-associated macrophage from M2-like to M1 phenotype. Cancer Immunol Immunother 2024; 73:128. [PMID: 38743074 PMCID: PMC11093951 DOI: 10.1007/s00262-024-03694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024]
Abstract
The majority of the immune cell population in the tumor microenvironment (TME) consists of tumor-associated macrophages (TAM), which are the main players in coordinating tumor-associated inflammation. TAM has a high plasticity and is divided into two main phenotypes, pro-inflammatory M1 type and anti-inflammatory M2 type, with tumor-suppressive and tumor-promoting functions, respectively. Considering the beneficial effects of M1 macrophages for anti-tumor and the high plasticity of macrophages, the conversion of M2 TAM to M1 TAM is feasible and positive for tumor treatment. This study sought to evaluate whether the glycopeptide derived from simulated digested Codonopsis pilosula extracts could regulate the polarization of M2-like TAM toward the M1 phenotype and the potential regulatory mechanisms. The results showed that after glycopeptide dCP1 treatment, the mRNA relative expression levels of some M2 phenotype marker genes in M2-like TAM in simulated TME were reduced, and the relative expression levels of M1 phenotype marker genes and inflammatory factor genes were increased. Analysis of RNA-Seq of M2-like TAM after glycopeptide dCP1 intervention showed that the gene sets such as glycolysis, which is associated with macrophage polarization in the M1 phenotype, were significantly up-regulated, whereas those of gene sets such as IL-6-JAK-STAT3 pathway, which is associated with polarization in the M2 phenotype, were significantly down-regulated. Moreover, PCA analysis and Pearson's correlation also indicated that M2-like TAM polarized toward the M1 phenotype at the transcriptional level after treatment with the glycopeptide dCP1. Lipid metabolomics was used to further explore the efficacy of the glycopeptide dCP1 in regulating the polarization of M2-like TAM to the M1 phenotype. It was found that the lipid metabolite profiles in dCP1-treated M2-like TAM showed M1 phenotype macrophage lipid metabolism profiles compared with blank M2-like TAM. Analysis of the key differential lipid metabolites revealed that the interconversion between phosphatidylcholine (PC) and diacylglycerol (DG) metabolites may be the central reaction of the glycopeptide dCP1 in regulating the conversion of M2-like TAM to the M1 phenotype. The above results suggest that the glycopeptide dCP1 has the efficacy to regulate the polarization of M2-like TAM to M1 phenotype in simulated TME.
Collapse
Affiliation(s)
- Hongxu Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, Guangdong, People's Republic of China
| | - Maojin Yao
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Valenti GE, Marengo B, Milanese M, Zuccari G, Brullo C, Domenicotti C, Alfei S. Imidazo-Pyrazole-Loaded Palmitic Acid and Polystyrene-Based Nanoparticles: Synthesis, Characterization and Antiproliferative Activity on Chemo-Resistant Human Neuroblastoma Cells. Int J Mol Sci 2023; 24:15027. [PMID: 37834475 PMCID: PMC10573130 DOI: 10.3390/ijms241915027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Neuroblastoma (NB) is a childhood cancer, commonly treated with drugs, such as etoposide (ETO), whose efficacy is limited by the onset of resistance. Here, aiming at identifying new treatments for chemo-resistant NB, the effects of two synthesized imidazo-pyrazoles (IMPs) (4G and 4I) were investigated on ETO-sensitive (HTLA-230) and ETO-resistant (HTLA-ER) NB cells, detecting 4I as the more promising compound, that demonstrated IC50 values lower than those of ETO on HTLA ER. Therefore, to further improve the activity of 4I, we developed 4I-loaded palmitic acid (PA) and polystyrene-based (P5) cationic nanoparticles (P5PA-4I NPs) with high drug loading (21%) and encapsulation efficiency (97%), by a single oil-in-water emulsification technique. Biocompatible PA was adopted as an emulsion stabilizer, while synthesized P5 acted as an encapsulating agent, solubilizer and hydrophilic-lipophilic balance (HLB) improver. Optic microscopy and cytofluorimetric analyses were performed to investigate the micromorphology, size and complexity distributions of P5PA-4I NPs, which were also structurally characterized by chemometric-assisted Fourier transform infrared spectroscopy (FTIR). Potentiometric titrations allowed us to estimate the milliequivalents of PA and basic nitrogen atoms present in NPs. P5PA-4I NPs afforded dispersions in water with excellent buffer capacity, essential to escape lysosomal degradation and promote long residence time inside cells. They were chemically stable in an aqueous medium for at least 40 days, while in dynamic light scattering (DLS) analyses, P5PA-4I showed a mean hydrodynamic diameter of 541 nm, small polydispersity (0.194), and low positive zeta potentials (+8.39 mV), assuring low haemolytic toxicity. Biological experiments on NB cells, demonstrated that P5PA-4I NPs induced ROS-dependent cytotoxic effects significantly higher than those of pristine 4I, showing a major efficacy compared to ETO in reducing cell viability in HTLA-ER cells. Collectively, this 4I-based nano-formulation could represent a new promising macromolecular platform to develop a new delivery system able to increase the cytotoxicity of the anticancer drugs.
Collapse
Affiliation(s)
- Giulia Elda Valenti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Marco Milanese
- Department of Pharmacy, Section of Chemistry and Pharmaceutical and Food Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry and Cosmetic Product, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.Z.); (C.B.)
| | - Chiara Brullo
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry and Cosmetic Product, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.Z.); (C.B.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Silvana Alfei
- Department of Pharmacy, Section of Chemistry and Pharmaceutical and Food Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy;
| |
Collapse
|
5
|
Wang X, Zhang C, Bao N. Molecular mechanism of palmitic acid and its derivatives in tumor progression. Front Oncol 2023; 13:1224125. [PMID: 37637038 PMCID: PMC10447256 DOI: 10.3389/fonc.2023.1224125] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Palmitic acid (PA) is a saturated fatty acid commonly found in coconut oil and palm oil. It serves as an energy source for the body and plays a role in the structure and function of cell membranes. Beyond its industrial applications, PA has gained attention for its potential therapeutic properties. Modern pharmacological studies have demonstrated that PA exhibits anti-inflammatory, antioxidant, and immune-enhancing effects. In recent years, PA has emerged as a promising anti-tumor agent with demonstrated efficacy against various malignancies including gastric cancer, liver cancer, cervical cancer, breast cancer, and colorectal cancer. Its anti-tumor effects encompass inducing apoptosis in tumor cells, inhibiting tumor cell proliferation, suppressing metastasis and invasion, enhancing sensitivity to chemotherapy, and improving immune function. The main anticancer mechanism of palmitic acid (PA) involves the induction of cell apoptosis through the mitochondrial pathway, facilitated by the promotion of intracellular reactive oxygen species (ROS) generation. PA also exhibits interference with the cancer cell cycle, leading to cell cycle arrest predominantly in the G1 phase. Moreover, PA induces programmed cell autophagy death, inhibits cell migration, invasion, and angiogenesis, and synergistically enhances the efficacy of chemotherapy drugs while reducing adverse reactions. PA acts on various intracellular and extracellular targets, modulating tumor cell signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), endoplasmic reticulum (ER), B Cell Lymphoma-2 (Bcl-2), P53, and other signaling pathways. Furthermore, derivatives of PA play a significant regulatory role in tumor resistance processes. This paper provides a comprehensive review of recent studies investigating the anti-tumor effects of PA. It summarizes the underlying mechanisms through which PA exerts its anti-tumor effects, aiming to inspire new perspectives for the treatment of malignant tumors in clinical settings and the development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Xitan Wang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chaonan Zhang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, Shandong, China
| | - Na Bao
- Jining First People’s Hospital, Jining, Shandong, China
| |
Collapse
|
6
|
Tan JQ, Zhang L, Xu HX. Garcinia oligantha: A comprehensive overview of ethnomedicine, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116130. [PMID: 36621661 DOI: 10.1016/j.jep.2022.116130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Garcinia oligantha Merr. is an ethnomedicine plant mainly distributed in Guangdong and Hainan, China. It has the effects of heat-clearing and detoxicating, which has been used by local ethnic minorities to treat a variety of diseases, including inflammation, internal heat, toothache and scald. THE AIM OF THE REVIEW This review summarizes and discusses the progress of the chemical compounds and biological activities of G. oligantha that have been studied in recent years to provide the direction for the prospective research and applications of G. oligantha. MATERIALS AND METHODS The relevant literature about G. oligantha was accessible from ancient Chinese medical books and records, theses, as well as major scientific databases such as Google Scholar, PubMed, Web of Science, ScienceDirect, SciFinder, Baidu Scholar and China National Knowledge Infrastructure (CNKI). RESULTS To date, more than 150 chemical compounds were isolated from this plant, including xanthones, volatile oil, fatty acid, benzofurane derivative and biphenyl compounds. Xanthones are the main bioactive compounds that exhibit diverse biological effects, such as antitumor, analgesic, anti-inflammatory, antioxidative, neuroprotective, antimalarial and antibacterial effects, which are consistent with its traditional uses as a folk medicine. Modern pharmacological studies show that these compounds participate in a variety of signaling pathways underlying different pathophysiologies, making them a valuable medicinal resource. CONCLUSION G. oligantha is an ethnomedicine with a long history. However, due to regional and cultural constraints, the popularisation and use of ethnomedicine are still limited. Modern pharmacological and chemical research suggest that G. oligantha contains a variety of bioactive compounds and showed diverse biological functions, which is worthy of comprehensive and in-depth research. This review summarizes and discusses the recent progress in studies on G. oligantha, looking forward to promote further research and sustainable development of folk medicinal plants.
Collapse
Affiliation(s)
- Jia-Qi Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
7
|
He Y, de Araújo Júnior RF, Cavalcante RS, Yu Z, Schomann T, Gu Z, Eich C, Cruz LJ. Effective breast cancer therapy based on palmitic acid-loaded PLGA nanoparticles. BIOMATERIALS ADVANCES 2023; 145:213270. [PMID: 36603405 DOI: 10.1016/j.bioadv.2022.213270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Although new strategies for breast cancer treatment have yielded promising results, most drugs can lead to serious side effects when applied systemically. Doxorubicin (DOX), currently the most effective chemotherapeutic drug to treat breast cancer, is poorly selective towards tumor cells and treatment often leads to the development of drug resistance. Recent studies have indicated that several fatty acids (FAs) have beneficial effects on inhibiting tumorigenesis. The saturated FA palmitic acid (PA) showed anti-tumor activities in several types of cancer, as well as effective repolarization of M2 macrophages towards the anti-tumorigenic M1 phenotype. However, water insolubility and cellular impermeability limit the use of PA in vivo. To overcome these limitations, here, we encapsulated PA into a poly(d,l-lactic co-glycolic acid) (PLGA) nanoparticle (NP) platform, alone and in combination with DOX, to explore PA's potential as mono or combinational breast cancer therapy. Our results showed that PLGA-PA-DOX NPs and PLGA-PA NPs significantly reduced the viability and migratory capacity of breast cancer cells in vitro. In vivo studies in mice bearing mammary tumors demonstrated that PLGA-PA-NPs were as effective in reducing primary tumor growth and metastasis as NPs loaded with DOX, PA and DOX, or free DOX. At the molecular level, PLGA-PA NPs reduced the expression of genes associated with multi-drug resistance and inhibition of apoptosis, and induced apoptosis via a caspase-3-independent pathway in breast cancer cells. In addition, immunohistochemical analysis of residual tumors showed a reduction in M2 macrophage content and infiltration of leukocytes after treatment of PLGA-PA NPs and PLGA-PA-DOX NPs, suggesting immunomodulatory properties of PA in the tumor microenvironment. In conclusion, the use of PA alone or in combination with DOX may represent a promising novel strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yuanyuan He
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Raimundo Fernandes de Araújo Júnior
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, 59064-720, Brazil; Cancer and Inflammation Research Laboratory (LAICI), Postgraduate Program in Functional and Structural Biology, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, 59064-720, Brazil; Percuros B.V., 2333, CL, Leiden, the Netherlands
| | - Rômulo S Cavalcante
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, 59064-720, Brazil; Cancer and Inflammation Research Laboratory (LAICI), Postgraduate Program in Functional and Structural Biology, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, 59064-720, Brazil
| | - Zhenfeng Yu
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Timo Schomann
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands; Percuros B.V., 2333, CL, Leiden, the Netherlands
| | - Zili Gu
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Christina Eich
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands.
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands.
| |
Collapse
|