1
|
Al-Hawary SIS, Jasim SA, Altalbawy FMA, Hjazi A, Jyothi SR, Kumar A, Eldesoqui M, Rasulova MT, Sinha A, Zwamel AH. Highlighting the role of long non-coding RNA (LncRNA) in multiple myeloma (MM) pathogenesis and response to therapy. Med Oncol 2024; 41:171. [PMID: 38849654 DOI: 10.1007/s12032-024-02392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Transcripts longer than 200 nucleotides that are not translated into proteins are known as long non-coding RNAs, or lncRNAs. Now, they are becoming more significant as important regulators of gene expression, and as a result, of many biological processes in both healthy and pathological circumstances, such as blood malignancies. Through controlling alternative splicing, transcription, and translation at the post-transcriptional level, lncRNAs have an impact on the expression of genes. In multiple myeloma (MM), the majority of lncRNAs is elevated and promotes the proliferation, adhesion, drug resistance and invasion of MM cells by blocking apoptosis and altering the tumor microenvironment (TME). To control mRNA splicing, stability, and translation, they either directly attach to the target mRNA or transfer RNA-binding proteins (RBPs). By expressing certain miRNA-binding sites that function as competitive endogenous RNAs (ceRNAs), most lncRNAs mimic the actions of miRNAs. Here, we highlight lncRNAs role in the MM pathogenesis with emphasize on their capacity to control the molecular mechanisms known as "hallmarks of cancer," which permit earlier tumor initiation and progression and malignant cell transformation.
Collapse
Affiliation(s)
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 13713, Diriyah, Riyadh, Saudi Arabia.
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - M T Rasulova
- Department of Physiology, Dean of the Faculty of Therapeutics, Fergana Medical Institute of Public Health, Fergana, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Aashna Sinha
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University Dehradun, Dehradun, Uttarakhand, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Wang Y, Bu N, Luan XF, Song QQ, Ma BF, Hao W, Yan JJ, Wang L, Zheng XL, Maimaitiyiming Y. Harnessing the potential of long non-coding RNAs in breast cancer: from etiology to treatment resistance and clinical applications. Front Oncol 2024; 14:1337579. [PMID: 38505593 PMCID: PMC10949897 DOI: 10.3389/fonc.2024.1337579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Breast cancer (BC) is the most common malignancy among women and a leading cause of cancer-related deaths of females worldwide. It is a complex and molecularly heterogeneous disease, with various subtypes that require different treatment strategies. Despite advances in high-resolution single-cell and multinomial technologies, distant metastasis and therapeutic resistance remain major challenges for BC treatment. Long non-coding RNAs (lncRNAs) are non-coding RNAs with more than 200 nucleotides in length. They act as competing endogenous RNAs (ceRNAs) to regulate post-transcriptional gene stability and modulate protein-protein, protein-DNA, and protein-RNA interactions to regulate various biological processes. Emerging evidence suggests that lncRNAs play essential roles in human cancers, including BC. In this review, we focus on the roles and mechanisms of lncRNAs in BC progression, metastasis, and treatment resistance, and discuss their potential value as therapeutic targets. Specifically, we summarize how lncRNAs are involved in the initiation and progression of BC, as well as their roles in metastasis and the development of therapeutic resistance. We also recapitulate the potential of lncRNAs as diagnostic biomarkers and discuss their potential use in personalized medicine. Finally, we provide lncRNA-based strategies to promote the prognosis of breast cancer patients in clinical settings, including the development of novel lncRNA-targeted therapies.
Collapse
Affiliation(s)
- Yun Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Bu
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-fei Luan
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian-qian Song
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ba-Fang Ma
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Wenhui Hao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing-jing Yan
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-ling Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yasen Maimaitiyiming
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
3
|
Deng W. Advancements in the Regulatory Role of microRNAs in Childhood Acute Lymphoblastic Leukemia: Mechanisms and Clinical Implications. Technol Cancer Res Treat 2024; 23:15330338241273143. [PMID: 39099455 DOI: 10.1177/15330338241273143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
microRNAs (miRNAs), tiny, non-coding RNA molecules, fine-tune the expression of target genes through interacting with mRNAs. These miRNAs are involved in a wide range of biological processes, encompassing cell division, death, blood cell production, and tumor development. When these miRNAs become dysfunctional, they can promote the invasion and spread of cancer cells in various human malignancies, including leukemia. Acute lymphoblastic leukemia (ALL), the preeminent malignancy affecting children, is a blood cancer marked by the uncontrollable growth of immature lymphoid cells that displace healthy blood precursors in the bone marrow. Despite a decline in ALL mortality rates over the past two decades, a significant proportion of deaths still results from a lack of effective diagnostic and prognostic markers that can guide treatment decisions and overcome drug resistance. The analysis of miRNA expression patterns in ALL could lead to more precise disease classification, earlier diagnosis, and better prognostic outcomes in the near future. The connection between miRNA dysfunction and the biology of ALL suggests that these molecules could represent promising therapeutic targets. Therefore, this review delves into the regulatory mechanisms of miRNAs in pediatric ALL, exploring how miRNA-based diagnostic, prognostic, and therapeutic strategies offer unique advantages and hold promise for clinical applications.
Collapse
Affiliation(s)
- Wei Deng
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou City, Gansu Province, P.R.China
| |
Collapse
|
4
|
Ding W, Wang D, Cai M, Yan Y, Liu S, Liu X, Luo A, Deng D, Liu X, Jiang H. PIWIL1 gene polymorphism and pediatric acute lymphoblastic leukemia relapse susceptibility among Chinese children: a five-center case-control study. Front Oncol 2023; 13:1203002. [PMID: 38023199 PMCID: PMC10652278 DOI: 10.3389/fonc.2023.1203002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Objective PIWIL1 polymorphisms' role in pediatric acute lymphoblastic leukemia (ALL) relapse susceptibility remains undiscovered. Methods A case-control designed and multiple logistic regression model was performed to evaluate the overall risk of pediatric ALL and five single-nucleotide polymorphisms (SNPs) of PIWIL1 gene (rs35997018 C>T, rs1106042 A>G, rs7957349 C>G, rs10773771 C>T, and rs10848087 A>G) in 785 cases and 1,323 controls, which were genotyped by TaqMan assay. The odds ratio (OR) and its 95% confidence interval (CI) were used to estimate the relationship. Stratified analysis was used to investigate the correlation of rs1106042 and rs10773771 genotypes and pediatric ALL relapse susceptibility in terms of age, sex, number of white blood cells (WBC), immunophenotyping, gene fusion type, karyotype, primitive/naïve lymphocytes, and minimal residual disease (MRD) in bone marrow. Finally, the haplotype analysis was performed to appraise the relationship between inferred haplotypes of PIWIL1 and pediatric ALL risk. Results Among the five analyzed SNPs, rs1106042 A>G was related to increased ALL risk, and rs10773771 C>T was related to decreased ALL risk. Compared to the GG genotype, the rs1106042 GA/AA had a deleterious effect on children of age <120 months, who were female and male, had high or average number of WBC, pro-B ALL, pre-B ALL, T-ALL, low- and middle-risk ALL, E2A-PBX fusion gene, non-gene fusion, abnormal diploid, high hyperdiploid, hypodiploid, and normal diploid. Moreover, rs1106042 A>G harmfully affected primitive/naïve lymphocytes and MRD on days 15-19, day 33, and week 12. On the contrary, rs10773771 TC/CC exhibited a protective effect on ALL children with the TEL-AML fusion gene. Haplotype analysis demonstrated that haplotypes CAGT, TACC, TACT, and TAGT were significantly associated with increased pediatric ALL relapse susceptibility. Conclusion PIWIL1 rs1106042 A>G was related to increased ALL risk, and rs10773771 C>T was linked to decreased ALL risk in eastern Chinese children. Rs1106042 GA/AA may predict poor prognosis.
Collapse
Affiliation(s)
- Wenjiao Ding
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Dao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mansi Cai
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yaping Yan
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Shanshan Liu
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Xiaodan Liu
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Ailing Luo
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Decheng Deng
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Xiaoping Liu
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hua Jiang
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Eldash S, Sanad EF, Nada D, Hamdy NM. The Intergenic Type LncRNA (LINC RNA) Faces in Cancer with In Silico Scope and a Directed Lens to LINC00511: A Step toward ncRNA Precision. Noncoding RNA 2023; 9:58. [PMID: 37888204 PMCID: PMC10610215 DOI: 10.3390/ncrna9050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Long intergenic non-coding RNA, is one type of lncRNA, exerting various cellular activities, as does ncRNA, including the regulation of gene expression and chromatin remodeling. The abnormal expression of lincRNAs can induce or suppress carcinogenesis. MAIN BODY LincRNAs can regulate cancer progression through different mechanisms and are considered as potential drug targets. Genetic variations such as single nucleotide polymorphisms (SNPs) in lincRNAs may affect gene expression and messenger ribonucleic acid (mRNA) stability. SNPs in lincRNAs have been found to be associated with different types of cancer, as well. Specifically, LINC00511 has been known to promote the progression of multiple malignancies such as breast cancer, colorectal cancer, lung cancer, hepatocellular carcinoma, and others, making it a promising cancer prognostic molecular marker. CONCLUSION LincRNAs have been proved to be associated with different cancer types through various pathways. Herein, we performed a comprehensive literature and in silico databases search listing lncRNAs, lincRNAs including LINC00511, lncRNAs' SNPs, as well as LINC00511 SNPs in different cancer types, focusing on their role in various cancer types and mechanism(s) of action.
Collapse
Affiliation(s)
- Shorouk Eldash
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo 11837, Egypt; (S.E.)
| | - Eman F. Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Dina Nada
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo 11837, Egypt; (S.E.)
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
6
|
Álvarez-Zúñiga CD, Garza-Veloz I, Martínez-Rendón J, Ureño-Segura M, Delgado-Enciso I, Martinez-Fierro ML. Circulating Biomarkers Associated with the Diagnosis and Prognosis of B-Cell Progenitor Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:4186. [PMID: 37627214 PMCID: PMC10453581 DOI: 10.3390/cancers15164186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological disease characterized by the dysfunction of the hematopoietic system that leads to arrest at a specific stage of stem cells development, suppressing the average production of cellular hematologic components. BCP-ALL is a neoplasm of the B-cell lineage progenitor. BCP-ALL is caused and perpetuated by several mechanisms that provide the disease with its tumor potential and genetic and cytological characteristics. These pathological features are used for diagnosis and the prognostication of BCP-ALL. However, most of these paraclinical tools can only be obtained by bone marrow aspiration, which, as it is an invasive study, can delay the diagnosis and follow-up of the disease, in addition to the anesthetic risk it entails for pediatric patients. For this reason, it is crucial to find noninvasive and accessible ways to supply information concerning diagnosis, prognosis, and the monitoring of the disease, such as circulating biomarkers. In oncology, a biomarker is any measurable indicator that demonstrates the presence of malignancy, tumoral behavior, prognosis, or responses to treatments. This review summarizes circulating molecules associated with BCP-ALL with potential diagnostic value, classificatory capacity during monitoring specific clinic features of the disease, and/or capacity to identify each BCP-ALL stage regarding its evolution and outcome of the patients with BCP-ALL. In the same way, we provide and classify biomarkers that may be used in further studies focused on clinical approaches or therapeutic target identification for BCP-ALL.
Collapse
Affiliation(s)
- Claudia Daniela Álvarez-Zúñiga
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| | - Jacqueline Martínez-Rendón
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| | - Misael Ureño-Segura
- Hematology Service, Hospital General Zacatecas “Luz González Cosío”, Servicios de Salud de Zacatecas, Zacatecas 98160, Mexico;
| | - Iván Delgado-Enciso
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico;
- School of Medicine, University of Colima, Colima 28040, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| |
Collapse
|
7
|
Shi H, Gao L, Zhang W, Jiang M. Long non-coding RNAs regulate treatment outcome in leukemia: What have we learnt recently? Cancer Med 2023. [PMID: 37148556 DOI: 10.1002/cam4.6027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023] Open
Abstract
Leukemia is a group of highly heterogeneous and life-threatening blood cancers that originate from abnormal hematopoietic stem cells. Multiple treatments are approved for leukemia, including chemotherapy, targeted therapy, hematopoietic stem cell transplantation, radiation therapy, and immunotherapy. Unfortunately, therapeutic resistance occurs in a substantial proportion of patients and greatly compromises the treatment efficacy of leukemia, resulting in relapse and mortality. The abnormal activity of receptor tyrosine kinases, cell membrane transporters, intracellular signal transducers, transcription factors, and anti-apoptotic proteins have been shown to contribute to the emergence of therapeutic resistance. Despite these findings, the exact mechanisms of treatment resistance are still not fully understood, which limits the development of effective measures to overcome it. Long non-coding RNAs (lncRNA) are a class of regulatory molecules that are gaining increasing attention, and lncRNA-mediated regulation of therapeutic resistance against multiple drugs for leukemia is being revealed. These dysregulated lncRNAs not only serve as potential targets to reduce resistance but also might improve treatment response prediction and individualized treatment decision. Here, we summarize the recent findings on lncRNA-mediated regulation of therapeutic resistance in leukemia and discuss future perspectives on how to make use of the dysregulated lncRNAs in leukemia to improve treatment outcome.
Collapse
Affiliation(s)
- Huiping Shi
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Liang Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Weili Zhang
- Department of Gastroenterology, Xiangcheng People's Hospital, Suzhou, Jiangsu, People's Republic of China
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
8
|
Wang SC, Yan XY, Yang C, Naranmandura H. The Landscape of Nucleic-Acid-Based Aptamers for Treatment of Hematologic Malignancies: Challenges and Future Directions. Bioengineering (Basel) 2022; 9:635. [PMID: 36354547 PMCID: PMC9687288 DOI: 10.3390/bioengineering9110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Hematologic malignancies, including leukemia, lymphoma, myeloproliferative disorder and plasma cell neoplasia, are genetically heterogeneous and characterized by an uncontrolled proliferation of their corresponding cell lineages in the bone marrow, peripheral blood, tissues or plasma. Although there are many types of therapeutic drugs (e.g., TKIs, chemotherapy drugs) available for treatment of different malignancies, the relapse, drug resistance and severe side effects due to the lack of selectivity seriously limit their clinical application. Currently, although antibody-drug conjugates have been well established as able to target and deliver highly potent chemotherapy agents into cancer cells for the reduction of damage to healthy cells and have achieved success in leukemia treatment, they still also have shortcomings such as high cost, high immunogenicity and low stability. Aptamers are ssDNA or RNA oligonucleotides that can also precisely deliver therapeutic agents into cancer cells through specifically recognizing the membrane protein on cancer cells, which is similar to the capabilities of monoclonal antibodies. Aptamers exhibit higher binding affinity, lower immunogenicity and higher thermal stability than antibodies. Therefore, in this review we comprehensively describe recent advances in the development of aptamer-drug conjugates (ApDCs) with cytotoxic payload through chemical linkers or direct incorporation, as well as further introduce the latest promising aptamers-based therapeutic strategies such as aptamer-T cell therapy and aptamer-PROTAC, clarifying their bright application, development direction and challenges in the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Si Chun Wang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou 310058, China
| | - Xing Yi Yan
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou 310058, China
| | - Chang Yang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou 310058, China
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hua Naranmandura
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou 310058, China
- Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| |
Collapse
|