1
|
Watteyne J, Chudinova A, Ripoll-Sánchez L, Schafer WR, Beets I. Neuropeptide signaling network of Caenorhabditis elegans: from structure to behavior. Genetics 2024; 228:iyae141. [PMID: 39344922 PMCID: PMC11538413 DOI: 10.1093/genetics/iyae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Neuropeptides are abundant signaling molecules that control neuronal activity and behavior in all animals. Owing in part to its well-defined and compact nervous system, Caenorhabditis elegans has been one of the primary model organisms used to investigate how neuropeptide signaling networks are organized and how these neurochemicals regulate behavior. We here review recent work that has expanded our understanding of the neuropeptidergic signaling network in C. elegans by mapping the evolutionary conservation, the molecular expression, the receptor-ligand interactions, and the system-wide organization of neuropeptide pathways in the C. elegans nervous system. We also describe general insights into neuropeptidergic circuit motifs and the spatiotemporal range of peptidergic transmission that have emerged from in vivo studies on neuropeptide signaling. With efforts ongoing to chart peptide signaling networks in other organisms, the C. elegans neuropeptidergic connectome can serve as a prototype to further understand the organization and the signaling dynamics of these networks at organismal level.
Collapse
Affiliation(s)
- Jan Watteyne
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| | | | - Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Psychiatry, Cambridge University, Cambridge CB2 0SZ, UK
| | - William R Schafer
- Department of Biology, University of Leuven, Leuven 3000, Belgium
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Isabel Beets
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
2
|
Lacerda RAV, Desio JAF, Kammers CM, Henkes S, Freitas de Sá M, de Souza EF, da Silva DM, Teixeira Pinheiro Gusmão C, Santos JCCD. Sleep disorders and risk of alzheimer's disease: A two-way road. Ageing Res Rev 2024; 101:102514. [PMID: 39317268 DOI: 10.1016/j.arr.2024.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Substantial sleep impairment in patients with Alzheimer's disease (AD) is one of the emerging points for continued efforts to better understand the disease. Individuals without cognitive decline, an important marker of the clinical phase of AD, may show early alterations in the sleep-wake cycle. The objective of this critical narrative review is to explore the bidirectional pathophysiological correlation between sleep disturbances and Alzheimer's Disease. Specifically, it examines how the disruption of sleep homeostasis in individuals without dementia could contribute to the pathogenesis of AD, and conversely, how neurodegeneration in individuals with Alzheimer's Disease might lead to dysregulation of the sleep-wake cycle. Recent scientific results indicate that sleep disturbances, particularly those related to impaired glymphatic clearance, may act as an important mechanism associated with the genesis of Alzheimer's Disease. Additionally, amyloid deposition and tau protein hyperphosphorylation, along with astrocytic hyperactivation, appear to trigger changes in neurotransmission dynamics in areas related to sleep, which may explain the onset of sleep disturbances in individuals with AD. Disruption of sleep homeostasis appears to be a modifiable risk factor in Alzheimer's disease. Whenever possible, the use of non-pharmacological strategies becomes important in this context. From a different perspective, additional research is needed to understand and treat the dysfunction of the sleep-wake cycle in individuals already affected by AD. Early recognition and correction of sleep disturbances in this population could potentially mitigate the progression of dementia and improve the quality of life for those with AD.
Collapse
Affiliation(s)
| | | | | | - Silvana Henkes
- Lutheran University of Brazil - ULBRA, Carazinho, RS, Brazil
| | | | | | | | | | - Júlio César Claudino Dos Santos
- Medical School of the Christus University Center - UNICHRISTUS, Fortaleza, CE, Brazil; Post-Graduate Program of Morphofunctional Sciences, Federal University of Ceara, Fortaleza, CE, Brazil; Unifacvest University Center - UNIFACVEST, Lages, SC, Brazil.
| |
Collapse
|
3
|
Nagarajan P, Kurniansyah N, Lee J, Gharib SA, Xu Y, Zhang Y, Spitzer B, Faquih T, Zhou H, Boerwinkle E, Chen H, Gottlieb DJ, Guo X, Heard-Costa NL, Hidalgo BA, Levy D, Liu PY, Mei H, Montalvan R, Mukherjee S, North KE, O’Conner GT, Palmer LJ, Patel SR, Psaty BM, Purcell SM, Raffield LM, Rich SS, Rotter JI, Saxena R, Smith AV, Stone KL, Zhu X, Cade BE, Sofer T, Redline S, Wang H. Gene-Excessive Sleepiness Interactions Suggest Treatment Targets for Obstructive Sleep Apnea Subtype. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.25.24316158. [PMID: 39574859 PMCID: PMC11581070 DOI: 10.1101/2024.10.25.24316158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Obstructive sleep apnea (OSA) is a multifactorial sleep disorder characterized by a strong genetic basis. Excessive daytime sleepiness (EDS) is a symptom that is reported by a subset of OSA patients, persisting even after treatment with continuous positive airway pressure (CPAP). It is recognized as a clinical subtype underlying OSA carrying alarming heightened cardiovascular risk. Thus, conceptualizing EDS as an exposure variable, we sought to investigate EDS's influence on genetic variation linked to apnea-hypopnea index (AHI), a diagnostic measure of OSA severity. This study serves as the first large-scale genome-wide gene x environment interaction analysis for AHI, investigating the interplay between its genetic markers and EDS across and within specific sex. Our work pools together whole genome sequencing data from seven cohorts, enabling a diverse dataset (four population backgrounds) of over 11,500 samples. Among the total 16 discovered genetic targets with interaction evidence with EDS, eight are previously unreported for OSA, including CCDC3, MARCHF1, and MED31 identified in all sexes; TMEM26, CPSF4L, and PI4K2B identified in males; and RAP1GAP and YY1 identified in females. We discuss connections to insulin resistance, thiamine deficiency, and resveratrol use that may be worthy of therapeutic consideration for excessively sleepy OSA patients.
Collapse
Affiliation(s)
- Pavithra Nagarajan
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Nuzulul Kurniansyah
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sina A. Gharib
- Pulmonary, Critical Care and Sleep Medicine, Medicine, University of Washington, Seattle, WA, USA
| | - Yushan Xu
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yiyan Zhang
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Brian Spitzer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tariq Faquih
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Hufeng Zhou
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Daniel J. Gottlieb
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Sleep Disorders Center, VA Boston Healthcare System
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nancy L. Heard-Costa
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
- Framingham Heart Study, Framingham, Massachusetts, Boston, MA, USA
| | - Bertha A. Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, Massachusetts, Boston, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter Y. Liu
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Sutapa Mukherjee
- Adelaide Institute for Sleep Health / Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
- Sleep Health Service, Respiratory and Sleep Service, Southern Adelaide Local Health Network, Bedford Park, South Australia, Australia
| | - Kari E. North
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - George T. O’Conner
- Framingham Heart Study, Framingham, Massachusetts, Boston, MA, USA
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Lyle J. Palmer
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, SA, Australia
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Sanjay R. Patel
- Center for Sleep and Cardiovascular Outcomes Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Shaun M. Purcell
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Katie L. Stone
- California Pacific Medical Center Research Institute, San Francisco and Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Brian E. Cade
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- CardioVascular Institute (CVI), Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Thomas DC, Somaiya T, Meira E Cruz M, Kodaganallur Pitchumani P, Ardeshna A, Ravi A, Prabhakar S. The enigma of sleep: Implications of sleep neuroscience for the dental clinician and patient. J Am Dent Assoc 2024; 155:735-746. [PMID: 39007793 DOI: 10.1016/j.adaj.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Sleep disturbances have been shown to result in considerable morbidity and mortality. It is important for dental clinicians to understand the neuroscience behind sleep disorders. TYPES OF STUDIES REVIEWED The authors conducted a search of the literature published from January 1990 through March 2024 of sleep medicine-related articles, with a focus on neuroscience. The authors prioritized articles about the science of sleep as related to dental medicine. RESULTS The authors found a proliferation of articles related to sleep neuroscience along with its implications in dental medicine. The authors also found that the intricate neuroscientific principles of sleep medicine are being investigated robustly. The salient features of, and the differences between, central and obstructive sleep apneas have been elucidated. Sleep genes, such as CRY, PER1, PER2, and CLOCK, and their relationship to cancer and neurodegeneration are also additions to this rapidly developing science. CONCLUSIONS AND PRACTICAL IMPLICATIONS The dental clinician has the potential to be the first to screen patients for possible sleep disorders and make prompt referrals to the appropriate medical professionals. This can be lifesaving as well as minimize potential future morbidity for the patient.
Collapse
|
5
|
Zou X, Ptáček LJ, Fu YH. The Genetics of Human Sleep and Sleep Disorders. Annu Rev Genomics Hum Genet 2024; 25:259-285. [PMID: 38669479 DOI: 10.1146/annurev-genom-121222-120306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Healthy sleep is vital for humans to achieve optimal health and longevity. Poor sleep and sleep disorders are strongly associated with increased morbidity and mortality. However, the importance of good sleep continues to be underrecognized. Mechanisms regulating sleep and its functions in humans remain mostly unclear even after decades of dedicated research. Advancements in gene sequencing techniques and computational methodologies have paved the way for various genetic analysis approaches, which have provided some insights into human sleep genetics. This review summarizes our current knowledge of the genetic basis underlying human sleep traits and sleep disorders. We also highlight the use of animal models to validate genetic findings from human sleep studies and discuss potential molecular mechanisms and signaling pathways involved in the regulation of human sleep.
Collapse
Affiliation(s)
- Xianlin Zou
- Department of Neurology, University of California, San Francisco, California, USA; , ,
| | - Louis J Ptáček
- Department of Neurology, University of California, San Francisco, California, USA; , ,
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Institute of Human Genetics, University of California, San Francisco, California, USA
| | - Ying-Hui Fu
- Institute of Human Genetics, University of California, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, California, USA; , ,
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| |
Collapse
|
6
|
Terzi A, Ngo KJ, Mourrain P. Phylogenetic conservation of the interdependent homeostatic relationship of sleep regulation and redox metabolism. J Comp Physiol B 2024; 194:241-252. [PMID: 38324048 PMCID: PMC11233307 DOI: 10.1007/s00360-023-01530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024]
Abstract
Sleep is an essential and evolutionarily conserved process that affects many biological functions that are also strongly regulated by cellular metabolism. The interdependence between sleep homeostasis and redox metabolism, in particular, is such that sleep deprivation causes redox metabolic imbalances in the form of over-production of ROS. Likewise (and vice versa), accumulation of ROS leads to greater sleep pressure. Thus, it is theorized that one of the functions of sleep is to act as the brain's "antioxidant" at night by clearing oxidation built up from daily stress of the active day phase. In this review, we will highlight evidence linking sleep homeostasis and regulation to redox metabolism by discussing (1) the bipartite role that sleep-wake neuropeptides and hormones have in redox metabolism through comparing cross-species cellular and molecular mechanisms, (2) the evolutionarily metabolic changes that accompanied the development of sleep loss in cavefish, and finally, (3) some of the challenges of uncovering the cellular mechanism underpinning how ROS accumulation builds sleep pressure and cellularly, how this pressure is cleared.
Collapse
Affiliation(s)
- Aslihan Terzi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Keri J Ngo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- INSERM 1024, Ecole Normale Supérieure, Paris, France.
| |
Collapse
|
7
|
Han Z, Yang X, Huang S. Sleep deprivation: A risk factor for the pathogenesis and progression of Alzheimer's disease. Heliyon 2024; 10:e28819. [PMID: 38623196 PMCID: PMC11016624 DOI: 10.1016/j.heliyon.2024.e28819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Sleep deprivation refers to an intentional or unintentional reduction in sleep time, resulting in insufficient sleep. It is often caused by sleep disorders, work demands (e.g., night shifts), and study pressure. Sleep deprivation promotes Aβ deposition and tau hyperphosphorylation, which is a risk factor for the pathogenesis and progression of Alzheimer's disease (AD). Recent research has demonstrated the potential involvement of sleep deprivation in both the pathogenesis and progression of AD through glial cell activation, the glial lymphatic system, orexin system, circadian rhythm system, inflammation, and the gut microbiota. Thus, investigating the molecular mechanisms underlying the association between sleep deprivation and AD is crucial, which may contribute to the development of preventive and therapeutic strategies for AD. This review aims to analyze the impact of sleep deprivation on AD, exploring the underlying pathological mechanisms that link sleep deprivation to the initiation and progression of AD, which offers a theoretical foundation for the development of drugs aimed at preventing and treating AD.
Collapse
Affiliation(s)
- Zhengyun Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingmao Yang
- Ji'nan Zhangqiu District Hospital of Traditional Chinese Medicine, Ji'nan, 250200, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Huang Y, Zhang J, You D, Chen S, Lin Z, Li B, Ling M, Tong H, Li F. Mechanisms underlying palmitic acid-induced disruption of locomotor activity and sleep behavior in Drosophila. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109813. [PMID: 38070757 DOI: 10.1016/j.cbpc.2023.109813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The globally prevalent of sleep disorders is partly attributed to unhealthy dietary habits. This study investigated the underlying mechanisms of elevated palmitic acid (PA) intake on locomotor activity and sleep behavior in Drosophila. Our results indicate that exposure to PA significantly elevated Drosophila's daytime and nighttime locomotor activity while concurrently reducing overall sleep duration. Utilizing 16S rRNA sequencing, we observed substantial alterations in the composition of the gut microbiota induced by PA, notably, characterized by a significant reduction in Lactobacillus plantarum. Furthermore, PA significantly increased the levels of inflammatory factors Upd3 and Eiger in Drosophila intestines, and downregulated the expression of Gad and Tph, as well as 5-HT1A. Conversely, Gdh and Hdc were significantly upregulated in the PA group. Supplementation with L. plantarum or lactic acid significantly ameliorated PA-induced disruptions in both locomotor activity and sleep behavior. This supplementation also suppressed the expression of intestinal inflammatory factors, thus restoring impaired neurotransmitter-mediated sleep-wake regulation. Moreover, specific knockdown of intestinal epithelial Upd3 or Eiger similarly restored disrupted neurotransmitter expression, ultimately improving PA-induced disturbances in Drosophila locomotor activity and sleep behavior. These findings provide important insights into the intricate interplay between dietary components and essential behaviors, highlighting potential avenues for addressing health challenges associated with modern dietary habits.
Collapse
Affiliation(s)
- Yumei Huang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, PR China
| | - Jiaqi Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Dongdong You
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Shangqin Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Zhongdong Lin
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Boyang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Menglai Ling
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China.
| | - Feng Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, PR China.
| |
Collapse
|
9
|
Beets I, Zels S, Vandewyer E, Demeulemeester J, Caers J, Baytemur E, Courtney A, Golinelli L, Hasakioğulları İ, Schafer WR, Vértes PE, Mirabeau O, Schoofs L. System-wide mapping of peptide-GPCR interactions in C. elegans. Cell Rep 2023; 42:113058. [PMID: 37656621 PMCID: PMC7615250 DOI: 10.1016/j.celrep.2023.113058] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Neuropeptides and peptide hormones are ancient, widespread signaling molecules that underpin almost all brain functions. They constitute a broad ligand-receptor network, mainly by binding to G protein-coupled receptors (GPCRs). However, the organization of the peptidergic network and roles of many peptides remain elusive, as our insight into peptide-receptor interactions is limited and many peptide GPCRs are still orphan receptors. Here we report a genome-wide peptide-GPCR interaction map in Caenorhabditis elegans. By reverse pharmacology screening of over 55,384 possible interactions, we identify 461 cognate peptide-GPCR couples that uncover a broad signaling network with specific and complex combinatorial interactions encoded across and within single peptidergic genes. These interactions provide insights into peptide functions and evolution. Combining our dataset with phylogenetic analysis supports peptide-receptor co-evolution and conservation of at least 14 bilaterian peptidergic systems in C. elegans. This resource lays a foundation for system-wide analysis of the peptidergic network.
Collapse
Affiliation(s)
- Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| | - Sven Zels
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | | | - Jonas Demeulemeester
- The Francis Crick Institute, London NW1 1AT, UK; VIB - KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jelle Caers
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Esra Baytemur
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Amy Courtney
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Petra E Vértes
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Inserm U1224, Brain-Immune Communication Lab, 75015 Paris, France
| | | |
Collapse
|
10
|
Ten-Blanco M, Flores Á, Cristino L, Pereda-Pérez I, Berrendero F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: from animal to clinical studies. Front Neuroendocrinol 2023; 69:101066. [PMID: 37015302 DOI: 10.1016/j.yfrne.2023.101066] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Orexins (also known as hypocretins) are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system and bind two different G protein-coupled receptors (OX1R and OX2R). Since its discovery in 1998, the orexin system has gained the interest of the scientific community as a potential therapeutic target for the treatment of different pathological conditions. Considering previous basic science research, a dual orexin receptor antagonist, suvorexant, was the first orexin agent to be approved by the US Food and Drug Administration to treat insomnia. In this review, we discuss and update the main preclinical and human studies involving the orexin system with several psychiatric and neurodegenerative diseases. This system constitutes a nice example of how basic scientific research driven by curiosity can be the best route to the generation of new and powerful pharmacological treatments.
Collapse
Affiliation(s)
- Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - África Flores
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona and Bellvitge University Hospital-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
11
|
Breast Cancer: How Hippotherapy Bridges the Gap between Healing and Recovery-A Randomized Controlled Clinical Trial. Cancers (Basel) 2023; 15:cancers15041317. [PMID: 36831658 PMCID: PMC9953804 DOI: 10.3390/cancers15041317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Breast cancer is the most diagnosed women's cancer, and has a high survival rate. Despite great progress in detection and treatment, life reconstruction requires comprehensive cross-sectoral approaches between different disciplines and deeper consideration of the patient's challenges. Hippotherapy is an emerging specialized rehabilitation approach, performed by accredited health professionals and equine specialists, on specially trained horses via their movement, activating major paths for physical, mental, psychic and social reinforcement, and is synergistic to rehabilitative and supportive care. METHODS We conducted a randomized open, prospective, two-armed, controlled trial on the effectiveness of hippotherapy versus conventional supportive care on adult women with a diagnosis of breast cancer, after the period of primary treatment (surgery, chemotherapy, radiotherapy). The 6-month program included, in the treated group, an initial 1-week daily hippotherapy session, followed by three short 2-day sessions with an interval of 2 months between each, where the patients received conventional supportive care. The control group received 6 months of conventional supportive care. The primary end point was quality of life. Cognitive performances, fatigue, anxiety, depression, and body image were the secondary end points. Measurements were done through self-reported questionnaires. RESULTS We observed statistical differences in the evolution of the measured parameters over time between the two groups. The hippotherapy group showed a much faster, favorable and continuous improvement until the end of the program for each function assessed. The most striking improvements were observed in global quality of life, and fatigue, while breast cancer-specific quality of life, cognitive performance, anxiety and depression and body image showed a less marked but still statistically significant difference at the final post-treatment evaluation. CONCLUSIONS We demonstrate the therapeutic relevance of hippotherapy, a one-health approach, as a key initial stage after cancer diagnosis and treatment to foster recovery. Furthermore, hippotherapy has a strong impact on cancer treatments' efficiency and reconstruction of patient's life and ecosystem. This work reveals a layer of complexity that needs to be broadly considered. TRIAL REGISTRATION ClincalTrials.gov NCT04350398 accessed on 1 January 2022. Registered 17 April 2020, retrospectively registered; French Clinical Trials in Cancer Register RECF3818. Registered 18 March 2019, retrospectively registered.
Collapse
|
12
|
Zhang XH, Zhang X, Feng HY, Cao CC, Lv HL, Wang YL, Ren LJ. An investigation on the changes of serum CCK-8, substance P, and 5-HT in patients with post-stroke insomnia. Technol Health Care 2023; 31:2355-2361. [PMID: 37483040 DOI: 10.3233/thc-230506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND At present, the pathogenesis of post-stroke insomnia (PSI) is still inconclusive. OBJECTIVE To explore the changes and significance of serum cholecystokinin-8 (CCK-8), substance P (SP), and 5-hydroxytryptamine (5-HT) in patients with PSI. METHODS Ninety-one patients with stroke were selected as the research subjects, and according to the score of the Athens Insomnia Scale (AIS), they were divided into the insomnia group and the non-insomnia group. The serum levels of CCK-8, SP, and 5-HT in the two groups were compared to explore their relationships with PSI. RESULTS Among the 91 patients, 56 were in the insomnia group and 35 were in the non-insomnia group, and the incidence of insomnia was 61.5%. There was no significant difference in the serum levels of CCK-8, SP, and 5-HT between the two groups (P= 0.696, 0.980, and 0.809, respectively). One-way analysis of variance showed that there was no significant correlation between the serum levels of CCK-8, SP, 5-HT, and the AIS score (P= 0.7393, 0.9581, and 0.5952, respectively). CONCLUSION The incidence of PSI was relatively high, but it could not be proved that CCK-8, SP, and 5-HT were involved in the pathogenesis of PSI. There might exist other neurotransmitters involved in the pathophysiological process of PSI, which should be further explored.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, Guangdong, China
| | - Xin Zhang
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, Guangdong, China
| | - Hong-Ye Feng
- Department of Rehabilitation, The First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Chang-Chun Cao
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, Guangdong, China
| | - Hui-Lan Lv
- Department of Rehabilitation, Shenzhen Dapeng New District Nanao People's Hospital, Shenzhen, Guangdong, China
| | - Yu-Long Wang
- Department of Rehabilitation, The First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Li-Jie Ren
- Department of Rehabilitation, The First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|