1
|
Ni R, Ge K, Luo Y, Zhu T, Hu Z, Li M, Tao P, Chi J, Li G, Yuan H, Pang Q, Gao W, Zhang P, Zhu Y. Highly sensitive microfluidic sensor using integrated optical fiber and real-time single-cell Raman spectroscopy for diagnosis of pancreatic cancer. Biosens Bioelectron 2024; 264:116616. [PMID: 39137518 DOI: 10.1016/j.bios.2024.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Pancreatic cancer is notoriously lethal due to its late diagnosis and poor patient response to treatments, posing a significant clinical challenge. This study introduced a novel approach that combines a single-cell capturing platform, tumor-targeted silver (Ag) nanoprobes, and precisely docking tapered fiber integrated with Raman spectroscopy. This approach focuses on early detection and progression monitoring of pancreatic cancer. Utilizing tumor-targeted Ag nanoparticles and tapered multimode fibers enhances Raman signals, minimizes light loss, and reduces background noise. This advanced Raman system allows for detailed molecular spectroscopic examination of individual cells, offering more practical information and enabling earlier detection and accurate staging of pancreatic cancer compared to conventional multicellular Raman spectroscopy. Transcriptomic analysis using high-throughput gene screening and transcriptomic databases confirmed the ability and accuracy of this method to identify molecular changes in normal, early, and metastatic pancreatic cancer cells. Key findings revealed that cell adhesion, migration, and the extracellular matrix are closely related to single-cell Raman spectroscopy (SCRS) results, highlighting components such as collagen, phospholipids, and carotene. Therefore, the SCRS approach provides a comprehensive view of the molecular composition, biological function, and material changes in cells, offering a novel, accurate, reliable, rapid, and efficient method for diagnosing and monitoring pancreatic cancer.
Collapse
Affiliation(s)
- Renhao Ni
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Kaixin Ge
- Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China; Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Tong Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Min Li
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, China
| | - Pan Tao
- Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China; Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Jinyi Chi
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Guanron Li
- Health Science Center, Ningbo University, Ningbo, 315211, China; The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
| | - Haojun Yuan
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Wanlei Gao
- College of Information Science and Engineering, Ningbo University, Ningbo, 315211, China.
| | - Peiqing Zhang
- Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China; Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Piontkowski ZT, Hayes DC, McDonald A, Pattison K, Butler KS, Timlin JA. Label-Free, Noninvasive Bone Cell Classification by Hyperspectral Confocal Raman Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:147-155. [PMID: 38425368 PMCID: PMC10900511 DOI: 10.1021/cbmi.3c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 03/02/2024]
Abstract
Characterizing and identifying cells in multicellular in vitro models remain a substantial challenge. Here, we utilize hyperspectral confocal Raman microscopy and principal component analysis coupled with linear discriminant analysis to form a label-free, noninvasive approach for classifying bone cells and osteosarcoma cells. Through the development of a library of hyperspectral Raman images of the K7M2-wt osteosarcoma cell lines, 7F2 osteoblast cell lines, RAW 264.7 macrophage cell line, and osteoclasts induced from RAW 264.7 macrophages, we built a linear discriminant model capable of correctly identifying each of these cell types. The model was cross-validated using a k-fold cross validation scheme. The results show a minimum of 72% accuracy in predicting cell type. We also utilize the model to reconstruct the spectra of K7M2 and 7F2 to determine whether osteosarcoma cancer cells and normal osteoblasts have any prominent differences that can be captured by Raman. We find that the main differences between these two cell types are the prominence of the β-sheet protein secondary structure in K7M2 versus the α-helix protein secondary structure in 7F2. Additionally, differences in the CH2 deformation Raman feature highlight that the membrane lipid structure is different between these cells, which may affect the overall signaling and functional contrasts. Overall, we show that hyperspectral confocal Raman microscopy can serve as an effective tool for label-free, nondestructive cellular classification and that the spectral reconstructions can be used to gain deeper insight into the differences that drive different functional outcomes of different cells.
Collapse
Affiliation(s)
- Zachary T. Piontkowski
- Sandia
National Laboratories, Department of Applied
Optics and Plasma Sciences, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| | - Dulce C. Hayes
- Sandia
National Laboratories, Department of Molecular
and Microbiology, 1515
Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| | - Anthony McDonald
- Sandia
National Laboratories, Department of Applied
Optics and Plasma Sciences, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| | - Kalista Pattison
- Sandia
National Laboratories, Department of Molecular
and Microbiology, 1515
Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| | - Kimberly S. Butler
- Sandia
National Laboratories, Department of Molecular
and Microbiology, 1515
Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| | - Jerilyn A. Timlin
- Sandia
National Laboratories, Department of Molecular
and Microbiology, 1515
Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| |
Collapse
|
3
|
Anantha P, Liu Z, Raj P, Barman I. Optical diffraction tomography and Raman spectroscopy reveal distinct cellular phenotypes during white and brown adipocyte differentiation. Biosens Bioelectron 2023; 235:115388. [PMID: 37207582 PMCID: PMC10626559 DOI: 10.1016/j.bios.2023.115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) are the primary types of fats in humans, and they play prominent roles in energy storage and thermogenesis, respectively. While the mechanisms of terminal adipogenesis are well understood, much remains unknown about the early stages of adipogenic differentiation. Label-free approaches, such as optical diffraction tomography (ODT) and Raman spectroscopy, offer the ability to retrieve morphological and molecular information at the single cell level without the negative effects of photobleaching and system perturbation due to introduction of fluorophores. In this study, we employed 3D ODT and Raman spectroscopy to gain deeper insights into the early stages of differentiation of human white preadipocytes (HWPs) and human brown preadipocytes (HBPs). We utilized ODT to retrieve morphological information, including cell dry mass and lipid mass, and Raman spectroscopy to obtain molecular information about lipids. Our findings reveal that HWPs and HBPs undergo dynamic and differential changes during the differentiation process. Notably, we found that HBPs accumulated lipids more rapidly and had a higher lipid mass than HWPs. Additionally, both cell types experienced an increase and subsequent decrease in cell dry mass during the first seven days, followed by an increase after day 7, which we attribute to the transformation of adipogenic precursors in the early stages. Finally, HBPs had higher lipid unsaturation levels than HWPs for the same differentiation timepoints. The insights gained from our study provide crucial contributions towards the advancement of new therapies for obesity and related diseases.
Collapse
Affiliation(s)
- Pooja Anantha
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhenhui Liu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA; The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Liang H, Shi R, Wang H, Zhou Y. Advances in the application of Raman spectroscopy in haematological tumours. Front Bioeng Biotechnol 2023; 10:1103785. [PMID: 36704299 PMCID: PMC9871369 DOI: 10.3389/fbioe.2022.1103785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Hematologic malignancies are a diverse collection of cancers that affect the blood, bone marrow, and organs. They have a very unpredictable prognosis and recur after treatment. Leukemia, lymphoma, and myeloma are the most prevalent symptoms. Despite advancements in chemotherapy and supportive care, the incidence rate and mortality of patients with hematological malignancies remain high. Additionally, there are issues with the clinical diagnosis because several hematological malignancies lack defined, systematic diagnostic criteria. This work provided an overview of the fundamentals, benefits, and limitations of Raman spectroscopy and its use in hematological cancers. The alterations of trace substances can be recognized using Raman spectroscopy. High sensitivity, non-destructive, quick, real-time, and other attributes define it. Clinicians must promptly identify disorders and keep track of analytes in biological fluids. For instance, surface-enhanced Raman spectroscopy is employed in diagnosing gene mutations in myelodysplastic syndromes due to its high sensitivity and multiple detection benefits. Serum indicators for multiple myeloma have been routinely used for detection. The simultaneous observation of DNA strand modifications and the production of new molecular bonds by tip-enhanced Raman spectroscopy is of tremendous significance for diagnosing lymphoma and multiple myeloma with unidentified diagnostic criteria.
Collapse
Affiliation(s)
- Haoyue Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ruxue Shi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haoyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,*Correspondence: Yuan Zhou,
| |
Collapse
|
5
|
Kim W, Park E, Yoo HS, Park J, Jung YM, Park JH. Recent Advances in Monitoring Stem Cell Status and Differentiation Using Nano-Biosensing Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2934. [PMID: 36079970 PMCID: PMC9457759 DOI: 10.3390/nano12172934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/14/2023]
Abstract
In regenerative medicine, cell therapies using various stem cells have received attention as an alternative to overcome the limitations of existing therapeutic methods. Clinical applications of stem cells require the identification of characteristics at the single-cell level and continuous monitoring during expansion and differentiation. In this review, we recapitulate the application of various stem cells used in regenerative medicine and the latest technological advances in monitoring the differentiation process of stem cells. Single-cell RNA sequencing capable of profiling the expression of many genes at the single-cell level provides a new opportunity to analyze stem cell heterogeneity and to specify molecular markers related to the branching of differentiation lineages. However, this method is destructive and distorted. In addition, the differentiation process of a particular cell cannot be continuously tracked. Therefore, several spectroscopic methods have been developed to overcome these limitations. In particular, the application of Raman spectroscopy to measure the intrinsic vibration spectrum of molecules has been proposed as a powerful method that enables continuous monitoring of biochemical changes in the process of the differentiation of stem cells. This review provides a comprehensive overview of current analytical methods employed for stem cell engineering and future perspectives of nano-biosensing technologies as a platform for the in situ monitoring of stem cell status and differentiation.
Collapse
Affiliation(s)
- Wijin Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Eungyeong Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| |
Collapse
|