1
|
Quax PHA, Deindl E. The Intriguing World of Vascular Remodeling, Angiogenesis, and Arteriogenesis. Int J Mol Sci 2024; 25:6376. [PMID: 38928082 PMCID: PMC11204171 DOI: 10.3390/ijms25126376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Vascular remodeling is a very general feature related to angiogenesis and arteriogenesis, which are involved in neovascularization processes [...].
Collapse
Affiliation(s)
- Paul H. A. Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152 Munich, Germany
| |
Collapse
|
2
|
Duess JW, Gosemann JH, Kaskova Gheorghescu A, Puri P, Thompson J. Y-27632 Impairs Angiogenesis on Extra-Embryonic Vasculature in Post-Gastrulation Chick Embryos. TOXICS 2023; 11:134. [PMID: 36851009 PMCID: PMC9962381 DOI: 10.3390/toxics11020134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Y-27632 inhibits Rho-associated coiled-coil-containing protein kinase (ROCK) signaling, which is involved in various embryonic developmental processes, including angiogenesis, by controlling actin cytoskeleton assembly and cell contractility. Administration of Y-27632 impairs cytoskeletal arrangements in post-gastrulation chick embryos, leading to ventral body wall defects (VBWDs). Impaired angiogenesis has been hypothesized to contribute to VBWDs. ROCK is essential in transmitting signals downstream of vascular endothelial growth factor (VEGF). VEGF-mediated angiogenesis induces gene expressions and alterations of the actin cytoskeleton upon binding to VEGF receptors (VEGFRs). The aim of this study was to investigate effects of Y-27632 on angiogenesis in post-gastrulation chick embryos during early embryogenesis. After 60 h incubation, embryos in shell-less culture were treated with Y-27632 or vehicle for controls. Y-27632-treated embryos showed reduced extra-embryonic blood vessel formation with impaired circulation of the yolk sac, confirmed by fractal analysis. Western blot confirmed impaired ROCK downstream signaling by decreased expression of phosphorylated myosin light chain. Interestingly, RT-PCR demonstrated increased gene expression of VEGF and VEGFR-2 1 h post-treatment. Protein levels of VEGF were higher in Y-27632-treated embryos at 8 h following treatment, whereas no difference was seen in membranes. We hypothesize that administration of Y-27632 impairs vessel formation during angiogenesis, which may contribute to failure of VWB closure, causing VBWDs.
Collapse
Affiliation(s)
- Johannes W. Duess
- Department of Pediatric Surgery, University of Leipzig, 04103 Leipzig, Germany
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Jan-Hendrik Gosemann
- Department of Pediatric Surgery, University of Leipzig, 04103 Leipzig, Germany
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
| | | | - Prem Puri
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Jennifer Thompson
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, 4 Dublin, Ireland
| |
Collapse
|
3
|
GTP-Binding Protein 1-Like (GTPBP1l) Regulates Vascular Patterning during Zebrafish Development. Biomedicines 2022; 10:biomedicines10123208. [PMID: 36551964 PMCID: PMC9775176 DOI: 10.3390/biomedicines10123208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Genetic regulation of vascular patterning is not fully understood. Here, we report a novel gene, gtpbp1l (GTP-binding protein 1-like), that regulates vascular development in zebrafish. Amino acid sequence comparison and a phylogenetic study showed that gtpbp1l is conserved in vertebrates. Gtpbp1l mRNA is expressed in the vasculature during embryogenesis. Knockdown of gtpbp1l by morpholino impairs the patterning of the intersegmental vessel (ISV) and caudal vein plexus (CVP), indicating the role of gtpbp1l in vasculature. Further apoptosis assays and transgenic fish tests suggested that vascular defects in gtpbp1l morphants are not due to cell death but are likely caused by the impairment of migration and proliferation. Moreover, the altered expression of vessel markers is consistent with the vascular defects in gtpbp1l morphants. Finally, we revealed that gtpbp1l is regulated by VEGF/notch and BMP signaling. Collectively, these findings showed that gtpbp1l plays a critical role in vascular patterning during zebrafish development.
Collapse
|
4
|
Venkatakrishnan G, Parvathi VD. Decoding the mechanism of vascular morphogenesis to explore future prospects in targeted tumor therapy. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:178. [PMID: 36036322 DOI: 10.1007/s12032-022-01810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
The growth and formation of blood vessels is an undeniably fundamental biological process crucial to controlling overall development of an organism. This phenomenon consists of two separate processes, commencing with vasculogenesis, which refers to the process of blood vessel formation strictly in embryonic stages, via de novo endothelial cell synthesis. Angiogenesis continues the formation of the vascular network via sprouting and splitting. Tumor growth is dependent on the growth and supply of blood vessels around the tumor mass. Extracellular matrix (ECM) molecules can promote angiogenesis by establishing a vascular network and sequestering pro-angiogenic growth factors. Although the methods by which tumor-associated fibroblasts (which differ in phenotype from normal fibroblasts) influence angiogenesis are unknown, they are thought to be a major source of growth factors and cytokines that attract endothelial cells. Chemokines and growth factors (sourced from macrophages and neutrophils) are also regulators of angiogenesis. When considered as a whole, the tumor microenvironment is a heterogenous and dynamic mass of tissue, composed of a plethora of cell types and an ECM that can fundamentally control the pathological angiogenic switch. Angiogenesis is involved in numerous diseases, and understanding the various mechanisms surrounding this phenomenon is key to finding cures.
Collapse
Affiliation(s)
- Gayathri Venkatakrishnan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India.
| |
Collapse
|